Olivine-respiring bacteria isolated from the rock-ice interface in a lava-tube cave, a Mars analog environment.

The boundary between ice and basalt on Earth is an analogue for some near-surface environments of Mars. We investigated neutrophilic iron-oxidizing microorganisms from the basalt-ice interface in a lava tube from the Oregon Cascades with perennial ice. One of the isolates (Pseudomonas sp. HerB) can use ferrous iron Fe(II) from the igneous mineral olivine as an electron donor and O(2) as an electron acceptor. The optimum growth temperature is ∼12-14°C, but growth also occurs at 5°C. Bicarbonate is a facultative source of carbon. Growth of Pseudomonas sp. HerB as a chemolithotrophic iron oxidizer with olivine as the source of energy is favored in low O(2) conditions (e.g., 1.6% O(2)). Most likely, microbial oxidation of olivine near pH 7 requires low O(2) to offset the abiotic oxidation of iron. The metabolic capabilities of this bacterium would allow it to live in near-surface, icy, volcanic environments of Mars in the present or recent geological past and make this type of physiology a prime candidate in the search for life on Mars.

[1]  J. Cuzzi,et al.  On the role of widespread subsurface convection in bringing liquid water close to Mars' surface , 2003 .

[2]  Christopher P. McKay,et al.  Abiotic nitrous oxide emission from the hypersaline Don Juan Pond in Antarctica , 2010 .

[3]  B. Gu,et al.  Dissolution of uranium-bearing minerals and mobilization of uranium by organic ligands in a biologically reduced sediment. , 2011, Environmental science & technology.

[4]  F. Widdel,et al.  Ferrous iron oxidation by anoxygenic phototrophic bacteria , 1993, Nature.

[5]  Philip R. Christensen,et al.  THEMIS observes possible cave skylights on Mars , 2007 .

[6]  N. Lazaroff,et al.  Direct method for continuous determination of iron oxidation by autotrophic bacteria. , 1974, Applied microbiology.

[7]  C P McKay,et al.  On the possibility of chemosynthetic ecosystems in subsurface habitats on Mars. , 1992, Icarus.

[8]  J. Guigner,et al.  Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria , 2009 .

[9]  M. Storrie-Lombardi,et al.  Iron-magnesium silicate bioweathering on Earth (and Mars?). , 2006, Astrobiology.

[10]  John F. Mustard,et al.  Recent ice ages on Mars , 2003, Nature.

[11]  S. Brantley,et al.  Etch pit formation on iron silicate surfaces during siderophore-promoted dissolution , 2007 .

[12]  F. Poitrasson,et al.  Laboratory experiments on the weathering of iron meteorites and carbonaceous chondrites by iron‐oxidizing bacteria , 2009 .

[13]  A. Seiff,et al.  Structure of the atmosphere of Mars in summer at mid-latitudes , 1977 .

[14]  Joshua L. Bandfield,et al.  A Global View of Martian Surface Compositions from MGS-TES , 2000 .

[15]  T. Imanaka,et al.  Isolation of a new mixotrophic bacterium which can fix C02 and assimilate aliphatic and aromatic hydrocarbons anaerobically , 1993 .

[16]  A. Fairén,et al.  A cold and wet Mars , 2010 .

[17]  M. Nei,et al.  MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. , 2007, Molecular biology and evolution.

[18]  D. Emerson,et al.  Enrichment and isolation of iron-oxidizing bacteria at neutral pH. , 2005, Methods in enzymology.

[19]  D. Hafenbradl,et al.  Ferroglobus placidus gen. nov., sp. nov., a novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions , 1996, Archives of Microbiology.

[20]  Christopher P. McKay,et al.  Do ice caves exist on Mars , 2010 .

[21]  A. Kappler,et al.  Fe(III) mineral formation and cell encrustation by the nitrate‐dependent Fe(II)‐oxidizer strain BoFeN1 , 2005 .

[22]  Jan-Peter Muller,et al.  Late Noachian to Hesperian climate change on Mars: Evidence of episodic warming from transient crater lakes near Ares Vallis , 2010 .

[23]  A. Jacobson,et al.  Characterization of elemental release during microbe–granite interactions at T = 28 °C , 2007 .

[24]  P. Zheng,et al.  Isolation and characterization of Pseudomonas stutzeri QZ1 from an anoxic sulfide-oxidizing bioreactor. , 2009, Anaerobe.

[25]  C. G. Wheat,et al.  In situ enrichment of ocean crust microbes on igneous minerals and glasses using an osmotic flow‐through device , 2011 .

[26]  S. Giovannoni,et al.  Sources of nutrients and energy for a deep biosphere on Mars , 1999 .

[27]  A. Butler,et al.  Self-assembling amphiphilic siderophores from marine bacteria. , 2000, Science.

[28]  F. Widdel,et al.  Anaerobic, nitrate-dependent microbial oxidation of ferrous iron , 1996, Applied and environmental microbiology.

[29]  V. Smil Cycles of Life: Civilization and the Biosphere , 1997 .

[30]  V. Hamilton,et al.  Evidence for extensive olivine-rich basalt bedrock outcrops in Ganges and Eos chasmas, Mars , 2008 .

[31]  Michael J. Leboffe,et al.  Microbiology : laboratory theory & application , 2012 .

[32]  R. Pusch,et al.  Soil–Water Systems , 2012 .

[33]  R. Clark,et al.  Discovery of Olivine in the Nili Fossae Region of Mars , 2003, Science.

[34]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[35]  K. Edwards,et al.  Neutrophilic Iron-Oxidizing Bacteria in the Ocean: Their Habitats, Diversity, and Roles in Mineral Deposition, Rock Alteration, and Biomass Production in the Deep-Sea , 2004 .

[36]  D. Newman Feasting on Minerals , 2010, Science.

[37]  K. Edwards,et al.  Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing, chemolithoautotrophic alpha- and gamma-proteobacteria from the deep sea. , 2003, Applied and environmental microbiology.

[38]  T. Stevens Lithoautotrophy in the subsurface , 1997 .

[39]  R. M. Lehman,et al.  Microbiological Comparison of Core and Groundwater Samples Collected from a Fractured Basalt Aquifer with that of Dialysis Chambers Incubated In Situ , 2004 .

[40]  J. Banfield,et al.  Modification of olivine surface morphology and reactivity by microbial activity during chemical weathering , 2002 .

[41]  R. Thauer,et al.  Energy conservation in chemotrophic anaerobic bacteria , 1977, Bacteriological reviews.

[42]  J. Chorover,et al.  Implications of the evolution of organic acid moieties for basalt weathering over geological time , 2005 .

[43]  B. Tebo,et al.  Utilization of Substrate Components during Basaltic Glass Colonization by Pseudomonas and Shewanella Isolates , 2009 .

[44]  M. G. García,et al.  Lava cave microbial communities within mats and secondary mineral deposits: implications for life detection on other planets. , 2011, Astrobiology.

[45]  B. Jørgensen,et al.  Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria , 2005, Nature.

[46]  James W. Head,et al.  Geologic history of Mars , 2010 .

[47]  S. Giovannoni,et al.  5. PERIDOTITE DISSOLUTION RATES IN MICROBIAL ENRICHMENT CULTURES , 2007 .

[48]  D. Cowan,et al.  Review and re-analysis of domain-specific 16S primers. , 2003, Journal of microbiological methods.

[49]  K. Straub,et al.  Diversity of Ferrous Iron-Oxidizing, Nitrate-Reducing Bacteria and their Involvement in Oxygen-Independent Iron Cycling , 2004 .

[50]  Michael H. Carr,et al.  Water on Mars , 1987, Nature.

[51]  D. Newman,et al.  Formation of Fe(III)-minerals by Fe(II)-oxidizing photoautotrophic bacteria , 2004 .

[52]  G. Muyzer,et al.  Diversity of iron oxidizers in wetland soils revealed by novel 16S rRNA primers targeting Gallionella-related bacteria , 2009, The ISME Journal.

[53]  G. Sposito,et al.  Biogeochemistry of iron oxidation in a circumneutral freshwater habitat , 2009 .

[54]  J. Priscu,et al.  The potential for lithoautotrophic life on Mars: application to shallow interfacial water environments. , 2007, Astrobiology.

[55]  David A. Kring,et al.  Impact‐induced hydrothermal activity on early Mars , 2005 .

[56]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[57]  P. McGovern,et al.  Depth of the Martian cryosphere: Revised estimates and implications for the existence and detection of subpermafrost groundwater , 2010 .

[58]  K. Edwards,et al.  Geomicrobiology of the Ocean Crust: A Role for Chemoautotrophic Fe-Bacteria , 2003, The Biological Bulletin.

[59]  P. Cornelis,et al.  Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. , 2002, Environmental microbiology.

[60]  M. Nei,et al.  Prospects for inferring very large phylogenies by using the neighbor-joining method. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[61]  J. Banfield,et al.  The effect of Fe-oxidizing bacteria on Fe-silicate mineral dissolution , 2001 .

[62]  K. Edwards,et al.  Isolation and Characterization of Novel Psychrophilic, Neutrophilic, Fe-Oxidizing, Chemolithoautotrophic α- and γ-Proteobacteria from the Deep Sea , 2003, Applied and Environmental Microbiology.

[63]  A. R. Tice,et al.  The Unfrozen Interfacial Phase in Frozen Soil Water Systems , 1973 .

[64]  G. De Luca,et al.  Experimental Colonization and Alteration of Orthopyroxene by the Pleomorphic Bacteria Ramlibacter tataouinensis , 2004 .

[65]  C. Moyer,et al.  Neutrophilic Fe-Oxidizing Bacteria Are Abundant at the Loihi Seamount Hydrothermal Vents and Play a Major Role in Fe Oxide Deposition , 2002, Applied and Environmental Microbiology.

[66]  B. Jørgensen,et al.  Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments , 2002 .

[67]  R. Knowles,et al.  N2-fixing pseudomonads and related soil bacteria , 1994 .

[68]  C. Moyer,et al.  Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH , 1997, Applied and environmental microbiology.

[69]  Barbara A. Cohen,et al.  Noble gases in iddingsite from the Lafayette meteorite: Evidence for liquid water on Mars in the last few hundred million years , 2000 .