Fishing activity of tuna purse seiners estimated from vessel monitoring system (VMS) data

In the lack of fishery-independent information, catch per unit of effort (CPUE) is the conventional abundance in- dex. In the case of the tropical tuna purse seine fisheries, a critical difficulty lies in the definition of an effective fishing ef- fort, because fishermen use two different fishing modes (free swimming schools versus schools under fish aggregating devices) alternatively during the same trip. In this study, vessel monitoring system (VMS) data were used in an operational level to study and quantify the spatial dynamic of the tropical tuna purse seine fishing activity. A Bayesian state-space model allowed classifying VMS steps into three activities (fishing, tracking, and cruising), which were characterized by a small set of complementary spatial indicators. The dominant activity (49%) was clearly the tracking of tuna schools within areas of aggregations. A hierarchical spatial organization of the three fishing activities was also evidenced. Fishing strategies described by the triplets of proportions of time devoted to each activity and interpreted as compositional data were modelled by the sum of a vessel effect and a seasonal effect. Resume : En l'absence d'information independante des peches commerciales, la capture par unite d'effort (CPUE) sert d'in- dice conventionnel d'abondance. Dans le cas des peches tropicales de thons a la seine coulissante, une difficulte particuliere est reliee a la definition d'un effort effectif de peche, car les pecheurs utilisent deux modes differents de peche (sur des bancs a nage libre et sur des bancs associes a des dispositifs de concentration des poissons) en alternance durant la meme sortie en mer. Dans notre etude, nous utilisons des donnees du systeme de surveillance des navires (VMS) a un niveau ope- rationnel pour examiner et mesurer la dynamique spatiale de l'activite de peche tropicale aux thons a la seine coulissante. Un modele etat-espace bayesien a permis de classifier les etapes VMS en trois activites (peche, poursuite et croisiere) qui sont caracterisees par un petit ensemble d'indicateurs spatiaux complementaires. L'activite dominante (49 %) est nettement la poursuite des bancs de thons au sein des zones de rassemblement. On a aussi pu degager une organisation spatiale hierar- chique des trois activites de peche. Les strategies de peche decrites par les triplets de proportions de temps consacrees a chaque activite et interpretees comme des donnees composees se modelisent par la somme d'un effet du navire et d'un effet de la saison. (Traduit par la Redaction)

[1]  O. Ovaskainen,et al.  State-space models of individual animal movement. , 2008, Trends in ecology & evolution.

[2]  A. Brix Bayesian Data Analysis, 2nd edn , 2005 .

[3]  Simon Jennings,et al.  Estimating high resolution trawl fishing effort from satellite-based vessel monitoring system data , 2007 .

[4]  Gerjan J. Piet,et al.  Potential pressure indicators for fishing, and their data requirements , 2007 .

[5]  J. Hallier,et al.  Review of tuna fisheries on floating objects in the Indian Ocean , 1992 .

[6]  Daniel Gaertner,et al.  Influence of fishers’ behaviour on the catchability of surface tuna schools in the Venezuelan purse-seiner fishery in the Caribbean Sea , 1999 .

[7]  Bo Sølgaard Andersen,et al.  Effects of fishing effort allocation scenarios on energy efficiency and profitability: an individual-based model applied to Danish fisheries. , 2010 .

[8]  M. Lengaigne,et al.  Patterns in the spatial distribution of Peruvian anchovy (Engraulis ringens) revealed by spatially explicit fishing data , 2008 .

[9]  Sophie Bertrand,et al.  Scale-invariant movements of fishermen: the same foraging strategy as natural predators. , 2007, Ecological applications : a publication of the Ecological Society of America.

[10]  Nicolas Bez,et al.  A pioneer validation of a state-space model of vessel trajectories (VMS) with observers’ data , 2010 .

[11]  Simon Jennings,et al.  Developing reliable, repeatable, and accessible methods to provide high-resolution estimates of fishing-effort distributions from vessel monitoring system (VMS) data , 2010 .

[12]  Stephen T. Buckland,et al.  State-space models for the dynamics of wild animal populations , 2004 .

[13]  Philippe Gaspar,et al.  A state-space model to derive bluefin tuna movement and habitat from archival tags , 2005 .

[14]  A. Fonteneau,et al.  ANALYSIS OF PURSE SEINE SET TIMES FOR FAD AND FREE SCHOOL ASSOCIATIONS IN THE ATLANTIC AND INDIAN OCEANS , 2010 .

[15]  I. Boyd,et al.  Monitoring a marine ecosystem using responses of upper trophic level predators , 2001 .

[16]  Paul G. Fernandes,et al.  Geostatistics for Estimating Fish Abundance , 2000 .

[17]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[18]  Brendan J. Godley,et al.  A Step Towards Seascape Scale Conservation: Using Vessel Monitoring Systems (VMS) to Map Fishing Activity , 2007, PloS one.

[19]  Juan M. Morales,et al.  EXTRACTING MORE OUT OF RELOCATION DATA: BUILDING MOVEMENT MODELS AS MIXTURES OF RANDOM WALKS , 2004 .

[20]  C. Gini Measurement of Inequality of Incomes , 1921 .

[21]  Sophie Bertrand,et al.  Optimization of an artificial neural network for identifying fishing set positions from VMS data: An example from the Peruvian anchovy purse seine fishery , 2011 .

[22]  Scott A. Shaffer,et al.  Analytical approaches to investigating seabird-environment interactions: a review , 2009 .

[23]  Etienne Rivot,et al.  Identifying fishing trip behaviour and estimating fishing effort from VMS data using Bayesian Hidden Markov Models , 2010 .

[24]  P. Leeuwen,et al.  Eddies and variability in the Mozambique Channel , 2003 .

[25]  R. Allen,et al.  Catch rates as indices of abundance of yellowfin tuna, Thunnus albacares, in the Eastern Pacific Ocean , 1984 .

[26]  Ian D. Jonsen,et al.  ROBUST STATE-SPACE MODELING OF ANIMAL MOVEMENT DATA , 2005 .

[27]  G. J. Piet,et al.  Effort allocation of the Dutch beam trawl fleet in response to a temporarily closed area in the North Sea , 2001 .

[28]  David Itano,et al.  Fish behaviour from fishers' knowledge: the case study of tropical tuna around drifting fish aggregating devices (DFADs) , 2007 .

[29]  M. C. Jones,et al.  The Statistical Analysis of Compositional Data , 1986 .