Isomeric [2]rotaxanes and unidirectional [2]pseudorotaxane composed of alpha-cyclodextrin and aliphatic chain-linked carbazole-viologen compounds.

[structure: see text] Capping the alpha-cyclodextrin (alpha-CD) complex of 1-(N-carbazole)-10-[4-(4-pyridinio)-1-pyridinio]decane with 3,5-dimethoxybenzyl bromide in DMF gives two isomeric [2]rotaxanes, 2a and 2b, while alpha-CD and 1-(N-carbazole)-10-[4-(1-methyl-4-pyridnino)-1-pyridinio]decane 3 in water form mostly a unidirectional [2]pseudorotaxane having the same alpha-CD orientation as 2b. Structures were elucidated from 1H NMR and circular dichroism spectra. The orientational specificity of alpha-CD in the 3/alpha-CD [2]pseudorotaxane is due to the slow dethreading rate of the 2b-type isomer.

[1]  S. Lincoln,et al.  Synthesis and conformational analysis of an α-cyclodextrin [2]-rotaxane , 1999 .

[2]  Soo Yeon Lee,et al.  Linkage length dependence of intramolecular photoinduced electron transfer reactions in aromatic donor-viologen acceptor molecules linked by polymethylene bridges , 1998 .

[3]  Harry L. Anderson,et al.  Rotaxane-encapsulated cyanine dyes: enhanced fluorescence efficiency and photostability , 2000 .

[4]  Alberto Credi,et al.  Viologen-calix[6]arene pseudorotaxanes. Ion-pair recognition and threading/dethreading molecular motions. , 2004, The Journal of organic chemistry.

[5]  Angel E. Kaifer,et al.  Novel class of asymmetric zwitterionic rotaxanes based on α-cyclodextrin , 1991 .

[6]  C. Lim,et al.  Versatile formation of [2]catenane and [2]pseudorotaxane structures; threading and noncovalent stoppering by a self-assembled macrocycle. , 2004, Organic letters.

[7]  Stoddart,et al.  Artificial Molecular Machines. , 2000, Angewandte Chemie.

[8]  Hee‐eun Song,et al.  Face Selectivity of Inclusion Complexation of Viologens with β-Cyclodextrin and 6-O-(2-Sulfonato-6-naphthyl)-β-cyclodextrin , 2002 .

[9]  M. Kodaka Sign of circular dichroism induced by .beta.-cyclodextrin , 1991 .

[10]  J. Fraser Stoddart,et al.  Cyclodextrin-Based Catenanes and Rotaxanes. , 1998, Chemical reviews.

[11]  M. G. Hutchings,et al.  Synthesis of a cyclodextrin azo dye [3]rotaxane as a single isomer , 1999 .

[12]  Joon Woo Park,et al.  Association of anionic surfactants with β-cyclodextrin. Fluorescence-probed studies on the 1:1 and 1:2 complexation , 1989 .

[13]  Kawaguchi,et al.  A cyclodextrin-based molecular shuttle containing energetically favored and disfavored portions in its dumbbell component , 2000, Organic letters.

[14]  Hiroshi Nakamura,et al.  Spectroscopic studies on exchange properties in through-ring cyclodextrin complexes of carbazole-viologen linked compounds: effects of spacer chain length , 1992 .

[15]  C. Saudan,et al.  A model for sequential threading of alpha-cyclodextrin onto a guest: a complete thermodynamic and kinetic study in water. , 2001, Journal of the American Chemical Society.

[16]  Sunao Yamada,et al.  Effect of π-system on long-range photoinduced electron transfer in through-ring α-cyclodextrin complexes of carbazole-viologen linked compounds , 1998 .

[17]  N. Nakashima,et al.  A Light-Driven Molecular Shuttle Based on a Rotaxane , 1997 .

[18]  M. Kodaka A general rule for circular dichroism induced by a chiral macrocycle , 1993 .

[19]  F. Marken,et al.  Enhanced chemical reversibility of redox processes incyanine dye rotaxanes , 2001 .

[20]  M. O'connell,et al.  Synthesis of fluorescent stilbene and tolan rotaxanes by Suzuki coupling , 2001 .

[21]  Konstantina Yannakopoulou,et al.  NMR Detection of Simultaneous Formation of [2]- and [3]Pseudorotaxanes in Aqueous Solution between α-Cyclodextrin and Linear Aliphatic α,ω-Amino acids, an α,ω-Diamine and an α,ω-Diacid of Similar Length, and Comparison with the Solid-State Structures , 1999 .

[22]  A. Secchi,et al.  Unidirectional threading of triphenylureidocalix[6]arene-based wheels: oriented pseudorotaxane synthesis. , 2003, Chemistry.

[23]  Harry L Anderson,et al.  Unidirectional photoinduced shuttling in a rotaxane with a symmetric stilbene dumbbell. , 2002, Angewandte Chemie.

[24]  A. Harada,et al.  An Electric Trap: A New Method for Entrapping Cyclodextrin in a Rotaxane Structure , 2000 .

[25]  H. Yonemura,et al.  Thermodynamic Parameters for Formation of Through-Ring α-Cyclodextrin Complexes of Donor–Acceptor Linked Compounds: Comparison between D2O and H2O Solutions of Anthracene–Viologen Systems with Intramolecular Charge-Transfer Absorption Spectra , 1993 .

[26]  A. Harada,et al.  Cyclodextrin-based molecular machines. , 2001, Accounts of chemical research.

[27]  H. Anderson,et al.  Azo‐Dye Rotaxanes , 1997 .

[28]  R. Isnin,et al.  A new approach to cyclodextrin-based rotaxanes , 1993 .

[29]  T. Fukaya,et al.  Induced Circular Dichroism Spectrum of α-Cyclodextrin Complex with Heptylviologen , 1989 .