Isogeometric shape optimization of nonlinear, curved 3D beams and beam structures

Abstract Straight beams, rods and trusses are common elements in structural and mechanical engineering, but recent advances in additive manufacturing now also enable efficient freeform fabrication of curved, deformable beams and beam structures, such as microstructures, metamaterials and conformal lattices. To exploit this new design freedom for applications with nonlinear mechanical behavior, we introduce an isogeometric method for shape optimization of curved 3D beams and beam structures. The geometrically exact Cosserat rod theory is used to model nonlinear 3D beams subject to large deformations and rotations. The initial and current geometry are parameterized in terms of NURBS curves describing the beam centerline and an isogeometric collocation approach is used to discretize the strong form of the balance equations. Then, a nonlinear optimization problem is formulated in order to optimize the positions of the control points of the NURBS curve that describes the beam centerline, i.e., the geometry or shape of the beam. To solve the design problem using gradient-based algorithms, we introduce semi-analytical, inconsistent analytical and fully analytical approaches for calculation of design sensitivities. The methods are numerically validated and their performance is investigated, before the applicability and versatility of our 3D beam shape optimization method is illustrated in various numerical applications, including optimization of an auxetic 3D metamaterial.

[1]  E. Reissner On finite deformations of space-curved beams , 1981 .

[2]  Rigoberto Burgueño,et al.  Buckling-induced smart applications: recent advances and trends , 2015 .

[3]  T. Hughes,et al.  Isogeometric collocation for elastostatics and explicit dynamics , 2012 .

[4]  Yunliang Ding,et al.  Shape optimization of structures: a literature survey , 1986 .

[5]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[6]  Behrooz Hassani,et al.  Application of isogeometric analysis in structural shape optimization , 2011 .

[7]  Fehmi Cirak,et al.  Isogeometric shape optimisation of shell structures using multiresolution subdivision surfaces , 2016, Comput. Aided Des..

[8]  Seung-Hyun Ha,et al.  Isogeometric shape design optimization: exact geometry and enhanced sensitivity , 2009 .

[9]  Bert Jüttler,et al.  Geometry + Simulation Modules: Implementing Isogeometric Analysis , 2014 .

[10]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[11]  Jakob S. Jensen,et al.  Topology Optimized Architectures with Programmable Poisson's Ratio over Large Deformations , 2015, Advanced materials.

[12]  R. Schmidt,et al.  Isogeometric shape optimization of shells using semi-analytical sensitivity analysis and sensitivity weighting , 2014 .

[13]  R. Haftka,et al.  Elements of Structural Optimization , 1984 .

[14]  Krister Svanberg Structural Optimization , 2009, Encyclopedia of Optimization.

[15]  Alessandro Reali,et al.  Isogeometric collocation methods for the Reissner–Mindlin plate problem , 2015 .

[16]  Xiaoping Qian,et al.  Isogeometric Shape Optimization on Triangulations , 2016, DAC 2016.

[17]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[18]  Mostafa Abdalla,et al.  Isogeometric design of elastic arches for maximum fundamental frequency , 2011 .

[19]  Alessandro Reali,et al.  Isogeometric collocation mixed methods for rods , 2015 .

[20]  W. Wall,et al.  Isogeometric structural shape optimization , 2008 .

[21]  P. Kerfriden,et al.  Shape optimization directly from CAD: An isogeometric boundary element approach using T-splines , 2017 .

[22]  Zafer Gürdal,et al.  Isogeometric sizing and shape optimisation of beam structures , 2009 .

[23]  Martin L. Dunn,et al.  Active origami by 4D printing , 2014 .

[24]  Marek Behr,et al.  Comparing Optimization Algorithms for Shape Optimization of Extrusion Dies , 2014 .

[25]  Sai-Kit Yeung,et al.  Isogeometric collocation methods for Cosserat rods and rod structures , 2017 .

[26]  Edward J. Haug,et al.  Problems and methods of optimal structural design , 1983 .

[27]  John A. Evans,et al.  A rapid and efficient isogeometric design space exploration framework with application to structural mechanics , 2017 .

[28]  Mostafa M. Abdalla,et al.  Isogeometric design of anisotropic shells: Optimal form and material distribution , 2013 .

[29]  Giuseppe Radaelli,et al.  Isogeometric Shape Optimization for Compliant Mechanisms With Prescribed Load Paths , 2014 .

[30]  Simon R. Eugster,et al.  Geometric Continuum Mechanics and Induced Beam Theories , 2015 .

[31]  Behrooz Hassani,et al.  Pre-bent shape design of full free-form curved beams using isogeometric method and semi-analytical sensitivity analysis , 2018, Structural and Multidisciplinary Optimization.

[32]  Anh-Vu Vuong,et al.  Fundamental aspects of shape optimization in the context of isogeometric analysis , 2015 .

[33]  Niels Olhoff,et al.  On CAD-integrated structural topology and design optimization , 1991 .

[34]  Baskar Ganapathysubramanian,et al.  A framework for parametric design optimization using isogeometric analysis , 2017 .

[35]  J. C. Simo,et al.  A finite strain beam formulation. The three-dimensional dynamic problem. Part I , 1985 .

[36]  Oded Amir,et al.  Truss optimization with buckling considerations using geometrically nonlinear beam modeling , 2017 .

[37]  F. Auricchio,et al.  Single-variable formulations and isogeometric discretizations for shear deformable beams , 2015 .

[38]  Alessandro Reali,et al.  An Introduction to Isogeometric Collocation Methods , 2015 .

[39]  Kurt Maute,et al.  Simultaneous Digital Design and Additive Manufacture of Structures and Materials , 2018, Scientific Reports.

[40]  S. Antman Nonlinear problems of elasticity , 1994 .

[41]  Chao Yuan,et al.  Direct 4D printing via active composite materials , 2017, Science Advances.

[42]  Jongmin Shim,et al.  3D Soft Metamaterials with Negative Poisson's Ratio , 2013, Advanced materials.

[43]  Ian Gibson,et al.  Additive manufacturing technologies : 3D printing, rapid prototyping, and direct digital manufacturing , 2015 .

[44]  Wim Desmet,et al.  Isogeometric collocation for Kirchhoff-Love plates and shells , 2018 .

[45]  Alessandro Reali,et al.  Locking-free isogeometric collocation methods for spatial Timoshenko rods , 2013 .

[46]  V. Braibant,et al.  Shape optimal design using B-splines , 1984 .

[47]  Xiaoping Qian,et al.  Full analytical sensitivities in NURBS based isogeometric shape optimization , 2010 .

[48]  Walter D. Pilkey,et al.  The coupling of geometric descriptions and finite elements using NURBs: a study in shape optimization , 1993 .

[49]  D. Rus,et al.  Design, fabrication and control of soft robots , 2015, Nature.

[50]  WeegerOliver,et al.  Optimal Design and Manufacture of Active Rod Structures with Spatially Variable Materials , 2016 .

[51]  Anindya Ghoshal,et al.  An interactive geometry modeling and parametric design platform for isogeometric analysis , 2015, Comput. Math. Appl..

[52]  Sai-Kit Yeung,et al.  Digital design and nonlinear simulation for additive manufacturing of soft lattice structures , 2019, Additive Manufacturing.

[53]  R. Haftka,et al.  Structural shape optimization — a survey , 1986 .

[54]  J. Lewis,et al.  3D‐Printing of Lightweight Cellular Composites , 2014, Advanced materials.

[55]  Martin L. Dunn,et al.  4D rods: 3D structures via programmable 1D composite rods , 2018 .

[56]  Alessandro Reali,et al.  Isogeometric Collocation: Cost Comparison with Galerkin Methods and Extension to Adaptive Hierarchical NURBS Discretizations , 2013 .

[57]  Enzo Marino,et al.  Isogeometric collocation for the Reissner–Mindlin shell problem , 2017 .

[58]  Justin Dirrenberger,et al.  Isogeometric shape optimization of smoothed petal auxetic structures via computational periodic homogenization , 2017 .

[59]  Jim Euchner Design , 2014, Catalysis from A to Z.

[60]  R. Fletcher Practical Methods of Optimization , 1988 .

[61]  Walter D. Pilkey,et al.  Shape Design for Thin-Walled Beam Cross Sections Using Rational B Splines , 1995 .

[62]  M. P. Saka,et al.  OPTIMUM DESIGN OF GEOMETRICALLY NONLINEAR SPACE TRUSSES , 1991 .

[63]  Thomas J. R. Hughes,et al.  Isogeometric collocation for large deformation elasticity and frictional contact problems , 2015 .

[64]  Timon Rabczuk,et al.  An isogeometric collocation method using superconvergent points , 2015 .

[65]  Howon Lee,et al.  Ultralight, ultrastiff mechanical metamaterials , 2014, Science.

[66]  Thomas W. Murphey LARGE STRAIN COMPOSITE MATERIALS IN DEPLOYABLE SPACE STRUCTURES , 2009 .

[67]  Raymond H. Plaut,et al.  Bimodal optimization of vibrating shallow arches , 1983 .

[68]  A. Marques,et al.  Multifunctional Material Systems: A state-of-the-art review , 2016 .

[69]  Laura De Lorenzis,et al.  The variational collocation method , 2016 .

[70]  T. Hughes,et al.  ISOGEOMETRIC COLLOCATION METHODS , 2010 .