A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy

[1]  T. Joensuu,et al.  Abnormal microglial activation in the Cstb−/− mouse, a model for progressive myoclonus epilepsy, EPM1 , 2015, Glia.

[2]  Stephan J Sanders,et al.  A framework for the interpretation of de novo mutation in human disease , 2014, Nature Genetics.

[3]  F. Zara,et al.  Expanding sialidosis spectrum by genome-wide screening , 2014, Neurology.

[4]  Mohamed Chahine,et al.  Biophysics, pathophysiology, and pharmacology of ion channel gating pores , 2014, Front. Pharmacol..

[5]  E. Reinmaa,et al.  Gene Expression Alterations in the Cerebellum and Granule Neurons of Cstb−/− Mouse Are Associated with Early Synaptic Changes and Inflammation , 2014, PloS one.

[6]  P. Striano,et al.  Progressive myoclonic epilepsies , 2014, Neurology.

[7]  J. Shendure,et al.  A general framework for estimating the relative pathogenicity of human genetic variants , 2014, Nature Genetics.

[8]  Y. Sekino,et al.  Kv3.3 channels harbouring a mutation of spinocerebellar ataxia type 13 alter excitability and induce cell death in cultured cerebellar Purkinje cells , 2014, The Journal of physiology.

[9]  Jonathan E. Dickerson,et al.  The genetic basis of DOORS syndrome: an exome-sequencing study , 2014, The Lancet Neurology.

[10]  María Martín,et al.  Activities at the Universal Protein Resource (UniProt) , 2013, Nucleic Acids Res..

[11]  A. Jalanko,et al.  Cell biology and function of neuronal ceroid lipofuscinosis-related proteins. , 2013, Biochimica et biophysica acta.

[12]  Jiannis Ragoussis,et al.  Next generation sequencing for molecular diagnosis of neurological disorders using ataxias as a model , 2013, Brain : a journal of neurology.

[13]  E. Boerwinkle,et al.  dbNSFP v2.0: A Database of Human Non‐synonymous SNVs and Their Functional Predictions and Annotations , 2013, Human mutation.

[14]  D. Goldstein,et al.  Genic Intolerance to Functional Variation and the Interpretation of Personal Genomes , 2013, PLoS genetics.

[15]  J. Gécz,et al.  TBC1D24 mutation associated with focal epilepsy, cognitive impairment and a distinctive cerebro-cerebellar malformation , 2013, Epilepsy Research.

[16]  B. Browning,et al.  Improving the Accuracy and Efficiency of Identity-by-Descent Detection in Population Data , 2013, Genetics.

[17]  Ellen T. Gelfand,et al.  The Genotype-Tissue Expression (GTEx) project , 2013, Nature Genetics.

[18]  B. Bender,et al.  Autosomal recessive spastic ataxia of Charlevoix Saguenay (ARSACS): expanding the genetic, clinical and imaging spectrum , 2013, Orphanet Journal of Rare Diseases.

[19]  A. Tolun,et al.  TBC1D24 truncating mutation resulting in severe neurodegeneration , 2013, Journal of Medical Genetics.

[20]  A. Tessa,et al.  Comparative Analysis and Functional Mapping of SACS Mutations Reveal Novel Insights into Sacsin Repeated Architecture , 2012, Human mutation.

[21]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[22]  S. Steinberg,et al.  Rate of de novo mutations and the importance of father’s age to disease risk , 2012, Nature.

[23]  S. Gallati,et al.  Targeted next generation sequencing as a diagnostic tool in epileptic disorders , 2012, Epilepsia.

[24]  B. Paradiso,et al.  Loss of cortical GABA terminals in Unverricht–Lundborg disease , 2012, Neurobiology of Disease.

[25]  Jian Ye,et al.  Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction , 2012, BMC Bioinformatics.

[26]  Murat Sincan,et al.  Detecting false‐positive signals in exome sequencing , 2012, Human mutation.

[27]  D. Papazian,et al.  Altered Kv3.3 channel gating in early‐onset spinocerebellar ataxia type 13 , 2012, The Journal of physiology.

[28]  D. Terman,et al.  Alternative Splicing Regulates Kv3.1 Polarized Targeting to Adjust Maximal Spiking Frequency* , 2011, The Journal of Biological Chemistry.

[29]  Melanie Bahlo,et al.  A mutation in the Golgi Qb-SNARE gene GOSR2 causes progressive myoclonus epilepsy with early ataxia. , 2011, American journal of human genetics.

[30]  Fadi A. Issa,et al.  Spinocerebellar Ataxia Type 13 Mutant Potassium Channel Alters Neuronal Excitability and Causes Locomotor Deficits in Zebrafish , 2011, The Journal of Neuroscience.

[31]  M. Hall,et al.  Importance of Glycosylation on Function of a Potassium Channel in Neuroblastoma Cells , 2011, PloS one.

[32]  S. Pulst,et al.  Frequency of KCNC3 DNA Variants as Causes of Spinocerebellar Ataxia 13 (SCA13) , 2011, PloS one.

[33]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[34]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[35]  W. Robberecht,et al.  Mutations in SACS cause atypical and late-onset forms of ARSACS , 2010, Neurology.

[36]  J. Gécz,et al.  A focal epilepsy and intellectual disability syndrome is due to a mutation in TBC1D24. , 2010, American journal of human genetics.

[37]  F. Benfenati,et al.  TBC1D24, an ARF6-interacting protein, is mutated in familial infantile myoclonic epilepsy. , 2010, American journal of human genetics.

[38]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[39]  Jana Marie Schwarz,et al.  MutationTaster evaluates disease-causing potential of sequence alterations , 2010, Nature Methods.

[40]  Daniel Rios,et al.  Bioinformatics Applications Note Databases and Ontologies Deriving the Consequences of Genomic Variants with the Ensembl Api and Snp Effect Predictor , 2022 .

[41]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[42]  S. Pulst,et al.  KCNC3: phenotype, mutations, channel biophysics—a study of 260 familial ataxia patients , 2010, Human mutation.

[43]  Heike Wulff,et al.  Voltage-gated potassium channels as therapeutic targets , 2009, Nature Reviews Drug Discovery.

[44]  F. Andermann,et al.  SCARB2 mutations in progressive myoclonus epilepsy (PME) without renal failure , 2009, Annals of neurology.

[45]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[46]  Maria K. Lehtinen,et al.  Cystatin B Deficiency Sensitizes Neurons to Oxidative Stress in Progressive Myoclonus Epilepsy, EPM1 , 2009, The Journal of Neuroscience.

[47]  B. Minassian,et al.  The autosomal recessively inherited progressive myoclonus epilepsies and their genes , 2009, Epilepsia.

[48]  S. Henikoff,et al.  Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm , 2009, Nature Protocols.

[49]  R. Vanninen,et al.  Clinical picture of EPM1‐Unverricht‐Lundborg disease , 2008, Epilepsia.

[50]  R. D'Hooge,et al.  Array-based gene discovery with three unrelated subjects shows SCARB2/LIMP-2 deficiency causes myoclonus epilepsy and glomerulosclerosis. , 2008, American journal of human genetics.

[51]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[52]  I. Scheffer,et al.  The spectrum of SCN1A-related infantile epileptic encephalopathies. , 2007, Brain : a journal of neurology.

[53]  Melissa J Corey,et al.  Characterization of N‐glycosylation consensus sequences in the Kv3.1 channel , 2006, The FEBS journal.

[54]  Dagmar Nolte,et al.  Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental central nervous system phenotypes , 2006, Nature Genetics.

[55]  N. Delanty,et al.  Progressive myoclonic epilepsies: a review of genetic and therapeutic aspects , 2005, The Lancet Neurology.

[56]  S. Scherer,et al.  Mutations in NHLRC1 cause progressive myoclonus epilepsy , 2003, Nature Genetics.

[57]  Bernard Prum,et al.  Estimation of the inbreeding coefficient through use of genomic data. , 2003, American journal of human genetics.

[58]  Alan F. Scott,et al.  Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders , 2002, Nucleic Acids Res..

[59]  B. Ghetti,et al.  Association between conformational mutations in neuroserpin and onset and severity of dementia , 2002, The Lancet.

[60]  Tom H. Pringle,et al.  The human genome browser at UCSC. , 2002, Genome research.

[61]  N. Heintz,et al.  Alcohol Hypersensitivity, Increased Locomotion, and Spontaneous Myoclonus in Mice Lacking the Potassium Channels Kv3.1 and Kv3.3 , 2001, The Journal of Neuroscience.

[62]  Bernardo Rudy,et al.  Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing , 2001, Trends in Neurosciences.

[63]  L. Lagae,et al.  De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. , 2001, American journal of human genetics.

[64]  Francisco Bezanilla,et al.  Histidine Scanning Mutagenesis of Basic Residues of the S4 Segment of the Shaker K+ Channel , 2001, The Journal of general physiology.

[65]  K. Lukong,et al.  Characterization of the sialidase molecular defects in sialidosis patients suggests the structural organization of the lysosomal multienzyme complex. , 2000, Human molecular genetics.

[66]  A. Erisir,et al.  Function of specific K(+) channels in sustained high-frequency firing of fast-spiking neocortical interneurons. , 1999, Journal of neurophysiology.

[67]  G. Marks,et al.  Increased γ- and Decreased δ-Oscillations in a Mouse Deficient for a Potassium Channel Expressed in Fast-Spiking Interneurons , 1999 .

[68]  G. Benson,et al.  Tandem repeats finder: a program to analyze DNA sequences. , 1999, Nucleic acids research.

[69]  L. Gan,et al.  When, where, and how much? Expression of the Kv3.1 potassium channel in high-frequency firing neurons. , 1998, Journal of neurobiology.

[70]  W G Regehr,et al.  Control of Neurotransmitter Release by Presynaptic Waveform at the Granule Cell to Purkinje Cell Synapse , 1997, The Journal of Neuroscience.

[71]  R. Grange,et al.  Pleiotropic effects of a disrupted K+ channel gene: reduced body weight, impaired motor skill and muscle contraction, but no seizures. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[72]  M. Fornerod,et al.  Characterization of human lysosomal neuraminidase defines the molecular basis of the metabolic storage disorder sialidosis. , 1996, Genes & development.

[73]  Roderick MacKinnon,et al.  Contribution of the S4 Segment to Gating Charge in the Shaker K+ Channel , 1996, Neuron.

[74]  Francisco Bezanilla,et al.  Voltage-Sensing Residues in the S2 and S4 Segments of the Shaker K+ Channel , 1996, Neuron.

[75]  Len A. Pennacchio,et al.  Mutations in the Gene Encoding Cystatin B in Progressive Myoclonus Epilepsy (EPM1) , 1996, Science.

[76]  B. Rudy,et al.  Localization of a highly conserved human potassium channel gene (NGK2-KV4; KCNC1) to chromosome 11p15. , 1993, Genomics.

[77]  D. Wallace,et al.  Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNALys mutation , 1990, Cell.

[78]  Jurg Ott,et al.  Linkage of a prion protein missense variant to Gerstmann–Sträussler syndrome , 1989, Nature.

[79]  F. Andermann,et al.  Progressive myoclonus epilepsies: specific causes and diagnosis. , 1986, The New England journal of medicine.