Thermodynamic analysis of serogroup C antigen production by Neisseria meningitidis

Kinetic and thermodynamic models are developed to relate substrate consumption, serogroup C antigen production and growth rate of Neisseria meningitidis, a meningitides causing bacterium during the uncontrolled, pH controlled and dissolved oxygen controlled cultivation. The model shows that the microorganisms used their energy metabolism the most efficiently in the case of the guaranteed presence of the dissolved oxygen, e.g., the ultimate acceptor of the electrons in the electron transport chain. The largest heat loss per unit biomass production, the largest exergy loss per unit biomass production, and the largest entropy generation per unit biomass production are accounted in the pH controlled experiment, indicating that the growth is achieved under thermodynamically unfavourable conditions. The exergetic efficiency of the microbial production and the antigen production are not parallel, confirming the discussion accounted in the literature that the antigen is produced best under the stress conditions.

[1]  J. Baruque-Ramos,et al.  Polysaccharide production in batch process of Neisseria meningitidis serogroup C comparing Frantz, modified Frantz and Cartlin 6 cultivation media , 2003 .

[2]  Carlos Silva,et al.  Entropy Stress and Scaling of Vital Organs over Life Span Based on Allometric Laws , 2012, Entropy.

[3]  J. Lupski,et al.  Whole-cell repetitive element sequence-based polymerase chain reaction allows rapid assessment of clonal relationships of bacterial isolates , 1993, Journal of clinical microbiology.

[4]  Jorge A. Marrero,et al.  Group-contribution based estimation of pure component properties , 2001 .

[5]  Ichiro Aoki,et al.  Entropy production in human life span: A thermodynamical measure for aging , 2006, AGE.

[6]  M. Apicella,et al.  Physicochemical Properties of Neisseria meningitidis Group C and Y Polysaccharide Antigens , 1970, Infection and immunity.

[7]  M. Özilgen,et al.  Thermodynamic efficiency of synthesis, storage and breakdown of the high-energy metabolites by photosynthetic microalgae. , 2013 .

[8]  D. Hershey Lifespan and factors affecting it;: Aging theories in gerontology , 1974 .

[9]  I. Kurnaz,et al.  Exergetic efficiency of ATP production in neuronal glucose metabolism , 2013 .

[10]  Arzu Şencan Şahin,et al.  Energy and exergy analyses of vacuum drying process of pine timbers , 2012 .

[11]  N. Vøllestad,et al.  Contraction coupling efficiency of human first dorsal interosseous muscle , 2008, The Journal of physiology.

[12]  D. Turnbull,et al.  Random intracellular drift explains the clonal expansion of mitochondrial DNA mutations with age. , 2001, American journal of human genetics.

[13]  P. Mead,et al.  Escherichia coli O157:H7 , 1998, The Lancet.

[14]  H. Kooi,et al.  The second-law implications of biochemical energy conversion: exergy analysis of glucose and fatty-acid breakdown in the living cell , 2009 .

[15]  Bert Vogelstein,et al.  Somatic mutations of the mitochondrial genome in human colorectal tumours , 1998, Nature Genetics.

[16]  I. Aoki,et al.  Entropy flow and entropy production in the human body in basal conditions. , 1989, Journal of theoretical biology.

[17]  I. Prigogine,et al.  Biologie et thermodynamique des phénomènes irréversibles , 1946, Experientia.

[18]  D. Turnbull,et al.  Accumulation of mitochondrial DNA mutations in ageing, cancer, and mitochondrial disease: is there a common mechanism? , 2002, The Lancet.

[19]  Jian Du,et al.  Metabolic glycoengineering: sialic acid and beyond. , 2009, Glycobiology.

[20]  E. Lima,et al.  Capsular polysaccharide production by Neisseria meningitidis serogroup C: Optimization of process variables using response surface methodology , 2006 .

[21]  Carlos Silva,et al.  Entropy Generation and Human Aging: Lifespan Entropy and Effect of Physical Activity Level , 2008, Entropy.

[22]  A. Pollard,et al.  Vaccines against bacterial meningitis. , 2004, British medical bulletin.

[23]  Anna Groher,et al.  Mechanistic model for the synthesis of N-acetylneuraminic acid using N-acetylneuraminate lyase from Escherichia coli K12 , 2012 .

[24]  D. Caugant,et al.  Neisseria meningitidis: an overview of the carriage state. , 2004, Journal of medical microbiology.

[25]  I. Kurnaz,et al.  Unsteady exergy destruction of the neuron under dynamic stress conditions , 2013 .

[26]  E. H. Battley An empirical method for estimating the entropy of formation and the absolute entropy of dried microbial biomass for use in studies on the thermodynamics of microbial growth , 1999 .

[27]  K. Kulkarni,et al.  L-Glutamic acid and glutamine: Exciting molecules of clinical interest , 2005 .

[28]  Urs von Stockar,et al.  Thermodynamics in biochemical engineering , 1997 .

[29]  R. Balmer ENTROPY AND AGING IN BIOLOGICAL SYSTEMS , 1982 .

[30]  David S. Latchman,et al.  Biochemistry (4th edn) , 1995 .

[31]  Richard D. Stokes,et al.  Exergy modeling to compare engineered products to biological systems for sustainable design , 2010 .

[32]  Silvio de Oliveira Junior,et al.  Modeling the exergy behavior of human body , 2012 .

[33]  X. Nassif Genomics of Neisseria meningitidis. , 2002, International journal of medical microbiology : IJMM.

[34]  Carlos Eduardo Keutenedjian Mady,et al.  Human Body Exergy Metabolism , 2013 .

[35]  D. Ollis,et al.  Kinetics of batch fermentations with Kluyveromyces fragilis , 1988 .

[36]  J. Kennedy,et al.  Meningococcal polysaccharide vaccines: A review , 2009 .

[37]  S. Roseman,et al.  Glucosamine metabolism. V. Enzymatic synthesis of glucosamine 6-phosphate. , 1960, The Journal of biological chemistry.

[38]  R. Tsang,et al.  Molecular analysis of monoclonal antibodies to group variant capsular polysaccharide of Neisseria meningitidis: recurrent heavy chains and alternative light chain partners , 2004, Molecular Immunology.

[39]  U. von Stockar,et al.  Does microbial life always feed on negative entropy? Thermodynamic analysis of microbial growth. , 1999, Biochimica et biophysica acta.

[40]  Kalyan Annamalai,et al.  Entropy Generation and Human Aging: Lifespan Entropy and Effect of Diet Composition and Caloric Restriction Diets , 2009 .

[41]  Chaodong Wu,et al.  Glycolysis in the control of blood glucose homeostasis , 2012 .

[42]  T. Janas,et al.  Membrane oligo- and polysialic acids. , 2011, Biochimica et biophysica acta.

[43]  David E. Graham,et al.  Acetamido Sugar Biosynthesis in the Euryarchaea , 2008, Journal of bacteriology.

[44]  M. Anjum,et al.  The pathogen Neisseria meningitidis requires oxygen, but supplements growth by denitrification. Nitrite, nitric oxide and oxygen control respiratory flux at genetic and metabolic levels , 2005, Molecular microbiology.

[45]  Don W. Green,et al.  Perry's Chemical Engineers' Handbook , 2007 .

[46]  Antonio Valero,et al.  Towards an International Reference Environment of Chemical Exergy , 2005 .

[47]  Stéphane Legendre,et al.  Evolutionary Entropy: A Predictor of Body Size, Metabolic Rate and Maximal Life Span , 2009, Bulletin of mathematical biology.

[48]  Daniel Hershey,et al.  A new age-scale for humans , 1980 .

[49]  Luciana Juncioni de Arauz,et al.  Polysaccharide production of Neisseria meningitidis (Serogroup C) in batch and fed-batch cultivations , 2005 .

[50]  S. Gupta,et al.  Meningococcal disease: history, epidemiology, pathogenesis, clinical manifestations, diagnosis, antimicrobial susceptibility and prevention. , 2006, Indian journal of medical microbiology.

[51]  Leonard Hayflick,et al.  Entropy Explains Aging, Genetic Determinism Explains Longevity, and Undefined Terminology Explains Misunderstanding Both , 2007, PLoS genetics.

[52]  A. Salminen,et al.  Genetics vs. entropy: Longevity factors suppress the NF-κB-driven entropic aging process , 2010, Ageing Research Reviews.