Optical neuromodulation at all scales: from nanomaterials to wireless optoelectronics and integrated systems.

Light-based neuromodulation systems offer exceptional spatiotemporal resolution combined with the elimination of physical tether to communicate with neurons. Currently, optical neuromodulation systems ranging from the nano to the centimeter scale enable neural activity control from the single cell to the organ level in retina, heart, spinal cord, and brain, facilitating a wide range of experiments in intact and freely moving animals in different contexts, such as during social interactions and behavioral tasks. Nanotransducers (e.g., metallic nanoparticles, silicon nanowires, and polymeric nanoparticles) and microfabricated photodiodes convert light to electrical, thermal, and mechanical stimuli that can allow remote and non-contact stimulation of neurons. Moreover, integrated devices composed of nano and microscale optoelectronic components comprise fully implantable and wirelessly powered smart optoelectronic systems that exhibit multimodal and closed-loop operation. In this review, we first discuss the material platforms, stimulation mechanisms, and applications of passive systems, i.e., nanotransducers and microphotodiodes. Then, we review the use of organic and inorganic light-emitting diodes for optogenetics and implantable wireless optoelectronic systems that enable closed-loop optogenetic neuromodulation through the use of light-emitting diodes, wireless power transfer circuits, and feedback loops. Exploration of materials and mechanisms together with the presented applications from both research and clinical perspectives in this review provides a comprehensive understanding of the optical neuromodulation field with its advantages and challenges to build superior systems in the future.

[1]  Chirag B. Patel,et al.  Remotely controlled near-infrared-triggered photothermal treatment of brain tumours in freely behaving mice using gold nanostars , 2022, Nature Nanotechnology.

[2]  D. Palanker,et al.  Pixel size limit of the PRIMA implants: from humans to rodents and back , 2022, bioRxiv.

[3]  D. Ghezzi,et al.  POLYRETINA restores light responses in vivo in blind Göttingen minipigs , 2022, Nature Communications.

[4]  B. Ulgut,et al.  RuO2 Supercapacitor Enables Flexible, Safe, and Efficient Optoelectronic Neural Interface , 2022, Advanced Functional Materials.

[5]  S. Nizamoglu,et al.  Electrical Stimulation of Neurons with Quantum Dots via Near-Infrared Light , 2022, ACS nano.

[6]  S. Nizamoglu,et al.  Optoelectronic Neural Interfaces Based on Quantum Dots , 2022, ACS applied materials & interfaces.

[7]  Huihui Tian,et al.  Remote neural regulation mediated by nanomaterials , 2022, Nanotechnology.

[8]  H. Sekiguchi,et al.  Adhesionable flexible GaN-based microLED array film to brain surface for in vivo optogenetic stimulation , 2022, Applied Physics Express.

[9]  D. Kaplan,et al.  Photoacoustic Carbon Nanotubes Embedded Silk Scaffolds for Neural Stimulation and Regeneration. , 2022, ACS nano.

[10]  M. Berggren,et al.  In Vivo Organic Bioelectronics for Neuromodulation , 2022, Chemical reviews.

[11]  S. Nizamoglu,et al.  Past, present and future of indium phosphide quantum dots , 2022, Nano Research.

[12]  B. Tian,et al.  Freestanding nanomaterials for subcellular neuronal interfaces , 2021, iScience.

[13]  Daniel Palanker,et al.  Simultaneous perception of prosthetic and natural vision in AMD patients , 2021, Nature communications.

[14]  OUP accepted manuscript , 2022, National Science Review.

[15]  Erkan Senses,et al.  Tissue‐Like Optoelectronic Neural Interface Enabled by PEDOT:PSS Hydrogel for Cardiac and Neural Stimulation , 2021, Advanced healthcare materials.

[16]  D. Ghezzi,et al.  Questions about the role of P3HT nanoparticles in retinal stimulation , 2021, Nature Nanotechnology.

[17]  G. Lanzani,et al.  Reply to: Questions about the role of P3HT nanoparticles in retinal stimulation , 2021, Nature Nanotechnology.

[18]  Choong Yeon Kim,et al.  Scalable and modular wireless-network infrastructure for large-scale behavioural neuroscience , 2021, Nature Biomedical Engineering.

[19]  Y. Gogotsi,et al.  Ti3C2Tx MXene Flakes for Optical Control of Neuronal Electrical Activity , 2021, ACS nano.

[20]  D. Huber,et al.  Wireless closed-loop optogenetics across the entire dorsoventral spinal cord in mice , 2021, Nature Biotechnology.

[21]  J. Simon Wiegert,et al.  BiPOLES is an optogenetic tool developed for bidirectional dual-color control of neurons , 2021, Nature Communications.

[22]  Jacob T. Robinson,et al.  Wireless Power Delivery Techniques for Miniature Implantable Bioelectronics , 2021, Advanced healthcare materials.

[23]  B. Roska,et al.  Partial recovery of visual function in a blind patient after optogenetic therapy , 2021, Nature Medicine.

[24]  Zoe R. Donaldson,et al.  Wireless multilateral devices for optogenetic studies of individual and social behaviors , 2021, Nature Neuroscience.

[25]  Diego Ghezzi,et al.  Photovoltaic retinal prosthesis restores high-resolution responses to single-pixel stimulation in blind retinas , 2021, Communications Materials.

[26]  Jongho Lee,et al.  An implantable optogenetic stimulator wirelessly powered by flexible photovoltaics with near-infrared (NIR) light. , 2021, Biosensors & bioelectronics.

[27]  S. Nizamoglu,et al.  Photovoltaic neurointerface based on aluminum antimonide nanocrystals , 2021, Communications Materials.

[28]  Mohajeet B. Bhuckory,et al.  Vertical-junction photodiodes for smaller pixels in retinal prostheses , 2021, Journal of neural engineering.

[29]  X. Jia,et al.  Neural Stimulation In Vitro and In Vivo by Photoacoustic Nanotransducers , 2021 .

[30]  Jin-Woo Park,et al.  Intrinsically stretchable organic light-emitting diodes , 2021, Science Advances.

[31]  J. Cheon,et al.  Non-contact long-range magnetic stimulation of mechanosensitive ion channels in freely moving animals , 2021, Nature Materials.

[32]  G. Moore,et al.  Anomalous collapses of Nares Strait ice arches leads to enhanced export of Arctic sea ice , 2021, Nature communications.

[33]  J. White,et al.  Non-genetic photoacoustic stimulation of single neurons by a tapered fiber optoacoustic emitter , 2020, Light, science & applications.

[34]  John A Rogers,et al.  Recent advances in neurotechnologies with broad potential for neuroscience research , 2020, Nature Neuroscience.

[35]  C. Moritz,et al.  A micro-LED implant and technique for optogenetic stimulation of the rat spinal cord , 2020, Experimental Neurology.

[36]  Arash Afraz,et al.  Chronically implantable LED arrays for behavioral optogenetics in primates , 2020, Nature Methods.

[37]  K. Araki,et al.  Development of high‐efficiency and low‐cost solar cells for PV‐powered vehicles application , 2020, Progress in Photovoltaics: Research and Applications.

[38]  H. Yawo,et al.  Ultraflexible organic light-emitting diodes for optogenetic nerve stimulation , 2020, Proceedings of the National Academy of Sciences.

[39]  M. Gather,et al.  A substrateless, flexible, and water-resistant organic light-emitting diode , 2020, Nature Communications.

[40]  Bing Chen,et al.  InP Quantum Dots: Synthesis and Lighting Applications. , 2020, Small.

[41]  G. Lanzani,et al.  Subretinally injected semiconducting polymer nanoparticles rescue vision in a rat model of retinal dystrophy , 2020, Nature Nanotechnology.

[42]  K. Choi,et al.  Reliable high temperature, high humidity flexible thin film encapsulation using Al2O3/MgO nanolaminates for flexible OLEDs , 2020, Nano Research.

[43]  Chunhua Liu,et al.  Wireless Power Transfer for Implanted Medical Application: A Review , 2020, Energies.

[44]  F. Bezanilla,et al.  Remote nongenetic optical modulation of neuronal activity using fuzzy graphene , 2020, Proceedings of the National Academy of Sciences.

[45]  D. Ghezzi,et al.  Photovoltaic organic interface for neuronal stimulation in the near-infrared , 2020, Communications Materials.

[46]  Caroline Murawski,et al.  Segment-specific optogenetic stimulation in Drosophila melanogaster with linear arrays of organic light-emitting diodes , 2020, Nature Communications.

[47]  Daniel Palanker,et al.  Photovoltaic Restoration of Central Vision in Atrophic Age-Related Macular Degeneration. , 2020, Ophthalmology.

[48]  S. B. Srivastava,et al.  Plasmon-Coupled Photocapacitor Neuromodulators , 2020, bioRxiv.

[49]  Zhenan Bao,et al.  Multifunctional materials for implantable and wearable photonic healthcare devices , 2020, Nature Reviews Materials.

[50]  G. Dreyfuss,et al.  U1 snRNP regulates cancer cell migration and invasion , 2019, bioRxiv.

[51]  Michal Lipson,et al.  Reconfigurable nanophotonic silicon probes for sub-millisecond deep-brain optical stimulation , 2018, Nature Biomedical Engineering.

[52]  Yi Shi,et al.  Photoelectric Cardiac Pacing by Flexible and Degradable Amorphous Si Radial Junction Stimulators , 2019, Advanced healthcare materials.

[53]  Vasilis Ntziachristos,et al.  A review of clinical photoacoustic imaging: Current and future trends , 2019, Photoacoustics.

[54]  Sylvain Williams,et al.  Optogenetic gamma stimulation rescues memory impairments in an Alzheimer’s disease mouse model , 2019, Nature Communications.

[55]  I. Kavakli,et al.  Biocompatible Quantum Funnels for Neural Photostimulation , 2019, Nano letters.

[56]  M. Prato,et al.  Chemically Cross-Linked Carbon Nanotube Films Engineered to Control Neuronal Signaling. , 2019, ACS nano.

[57]  John A Rogers,et al.  Battery-free, fully implantable optofluidic cuff system for wireless optogenetic and pharmacological neuromodulation of peripheral nerves , 2019, Science Advances.

[58]  Bozhi Tian,et al.  An atlas of nano-enabled neural interfaces , 2019, Nature Nanotechnology.

[59]  Bozhi Tian,et al.  Nanowired Bioelectric Interfaces. , 2019, Chemical reviews.

[60]  M. Berggren,et al.  Optoelectronic control of single cells using organic photocapacitors , 2019, Science Advances.

[61]  Jian-Guo Chen,et al.  Vagus Nerve Stimulation for Depression: A Systematic Review , 2019, Front. Psychol..

[62]  Zhigang Chen,et al.  Near‐Infrared‐Light Activatable Nanoparticles for Deep‐Tissue‐Penetrating Wireless Optogenetics , 2019, Advanced healthcare materials.

[63]  G. D. da Rocha,et al.  Occurrence of the potent mutagens 2- nitrobenzanthrone and 3-nitrobenzanthrone in fine airborne particles , 2019, Scientific Reports.

[64]  Sangjin Yoo,et al.  Single-Cell Photothermal Neuromodulation for Functional Mapping of Neural Networks. , 2019, ACS nano.

[65]  Edward Bloch,et al.  Advances in retinal prosthesis systems , 2019, Therapeutic advances in ophthalmology.

[66]  Bong Hoon Kim,et al.  A Wireless Closed Loop System for Optogenetic Peripheral Neuromodulation , 2018, Nature.

[67]  K. Choi,et al.  Design of Highly Water Resistant, Impermeable, and Flexible Thin-Film Encapsulation Based on Inorganic/Organic Hybrid Layers. , 2018, ACS applied materials & interfaces.

[68]  Jae Gwang Um,et al.  Active‐Matrix GaN µ‐LED Display Using Oxide Thin‐Film Transistor Backplane and Flip Chip LED Bonding , 2018, Advanced Electronic Materials.

[69]  T. Someya,et al.  Durable Ultraflexible Organic Photovoltaics with Novel Metal‐Oxide‐Free Cathode , 2018, Advanced Functional Materials.

[70]  Menahem Y. Rotenberg,et al.  Optical stimulation of cardiac cells with a polymer-supported silicon nanowire matrix , 2018, Proceedings of the National Academy of Sciences.

[71]  John A. Rogers,et al.  Fully implantable optoelectronic systems for battery-free, multimodal operation in neuroscience research , 2018, Nature Electronics.

[72]  Jae-Woong Jeong,et al.  Microscale Inorganic LED Based Wireless Neural Systems for Chronic in vivo Optogenetics , 2018, Front. Neurosci..

[73]  Shun Zhang,et al.  Transfer printing techniques for flexible and stretchable inorganic electronics , 2018, npj Flexible Electronics.

[74]  Cameron K. Baker,et al.  Innovative Optogenetic Strategies for Vision Restoration , 2018, Front. Cell. Neurosci..

[75]  John A. Rogers,et al.  Recent Advances in Flexible Inorganic Light Emitting Diodes: From Materials Design to Integrated Optoelectronic Platforms , 2018, Advanced Optical Materials.

[76]  T. Ng,et al.  Stem cell therapy for retinal ganglion cell degeneration , 2018, Neural Regeneration Research.

[77]  Yoel Fink,et al.  Diode fibres for fabric-based optical communications , 2018, Nature.

[78]  I. Kavakli,et al.  Effective Neural Photostimulation Using Indium-Based Type-II Quantum Dots , 2018, ACS nano.

[79]  Jung Hwan Park,et al.  Monolithic Flexible Vertical GaN Light‐Emitting Diodes for a Transparent Wireless Brain Optical Stimulator , 2018, Advanced materials.

[80]  Xing Sheng,et al.  Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources , 2018, Proceedings of the National Academy of Sciences.

[81]  T. Someya,et al.  Reverse‐Offset Printed Ultrathin Ag Mesh for Robust Conformal Transparent Electrodes for High‐Performance Organic Photovoltaics , 2018, Advanced materials.

[82]  N. S. Sariciftci,et al.  Direct Electrical Neurostimulation with Organic Pigment Photocapacitors , 2018, Advanced materials.

[83]  John A Rogers,et al.  Implantable, wireless device platforms for neuroscience research , 2018, Current Opinion in Neurobiology.

[84]  G. Braun,et al.  Graphene biointerfaces for optical stimulation of cells , 2018, Science Advances.

[85]  Chin-Tu Chen,et al.  Rational design of silicon structures for optically controlled multiscale biointerfaces , 2018, Nature Biomedical Engineering.

[86]  Diego Ghezzi,et al.  Design and validation of a foldable and photovoltaic wide-field epiretinal prosthesis , 2018, Nature Communications.

[87]  Mingyuan Gao,et al.  Biocompatible Semiconductor Quantum Dots as Cancer Imaging Agents , 2018, Advanced materials.

[88]  Kathryn L. Hilde,et al.  Graded Arrays of Spinal and Supraspinal V2a Interneuron Subtypes Underlie Forelimb and Hindlimb Motor Control , 2018, Neuron.

[89]  Kenji F. Tanaka,et al.  Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics , 2018, Science.

[90]  Kiuk Gwak,et al.  Optogenetic control of body movements via flexible vertical light-emitting diodes on brain surface , 2018 .

[91]  Bozhi Tian,et al.  Photoelectrochemical modulation of neuronal activity with free-standing coaxial silicon nanowires , 2018, Nature Nanotechnology.

[92]  Francisco Bezanilla,et al.  Optocapacitive Generation of Action Potentials by Microsecond Laser Pulses of Nanojoule Energy , 2017, Biophysical journal.

[93]  Jae-Woong Jeong,et al.  Miniaturized, Battery-Free Optofluidic Systems with Potential for Wireless Pharmacology and Optogenetics. , 2018, Small.

[94]  Teresa J. Feo,et al.  Structural absorption by barbule microstructures of super black bird of paradise feathers , 2018, Nature Communications.

[95]  Ashwin Balakrishna,et al.  A microscale optical implant for continuous in vivo monitoring of intraocular pressure , 2017, Microsystems & Nanoengineering.

[96]  Yonggang Huang,et al.  Fully implantable, battery-free wireless optoelectronic devices for spinal optogenetics , 2017, Pain.

[97]  Xiaoqun Gong,et al.  Near-Infrared Light Triggered Upconversion Optogenetic Nanosystem for Cancer Therapy. , 2017, ACS nano.

[98]  E. Boyden,et al.  Temporally precise single-cell resolution optogenetics , 2017, Nature Neuroscience.

[99]  Mohamed S. Emara,et al.  Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber , 2017, Nature Neuroscience.

[100]  Eran A Barnoy,et al.  The effect of nanoparticle size on the ability to cross the blood-brain barrier: an in vivo study. , 2017, Nanomedicine.

[101]  Karl Deisseroth,et al.  Next-generation probes, particles, and proteins for neural interfacing , 2017, Science Advances.

[102]  Ege Iseri,et al.  Implantable optoelectronic probes for in vivo optogenetics , 2017, Journal of neural engineering.

[103]  Thomas J. Richner,et al.  Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits , 2017, Science Advances.

[104]  Sang Youn Han,et al.  Flexible Near-Field Wireless Optoelectronics as Subdermal Implants for Broad Applications in Optogenetics , 2017, Neuron.

[105]  X. Jia,et al.  One-Step Optogenetics with Multifunctional Flexible Polymer Fibers , 2017, Nature Neuroscience.

[106]  Udo Greppmaier,et al.  Laboratory and clinical reliability of conformally coated subretinal implants , 2017, Biomedical microdevices.

[107]  Seok Hyun Yun,et al.  Light in diagnosis, therapy and surgery , 2016, Nature Biomedical Engineering.

[108]  M. Cecchini,et al.  Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease , 2016, Scientific Reports.

[109]  Emilio Bizzi,et al.  An Optogenetic Demonstration of Motor Modularity in the Mammalian Spinal Cord , 2016, Scientific Reports.

[110]  Jochen Guck,et al.  Materials and technologies for soft implantable neuroprostheses , 2016, Nature Reviews Materials.

[111]  Raquel Ferreira,et al.  Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. , 2016, Journal of controlled release : official journal of the Controlled Release Society.

[112]  Yan Lyu,et al.  Semiconducting Polymer Nanobioconjugates for Targeted Photothermal Activation of Neurons. , 2016, Journal of the American Chemical Society.

[113]  M. Carrière,et al.  Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials. , 2016, Chemical reviews.

[114]  Bozhi Tian,et al.  Heterogeneous silicon mesostructures for lipid-supported bioelectric interfaces , 2016, Nature materials.

[115]  K. Hoang-Xuan,et al.  Clinical trial of blood-brain barrier disruption by pulsed ultrasound , 2016, Science Translational Medicine.

[116]  Mark S. George,et al.  The Clinical TMS Society Consensus Review and Treatment Recommendations for TMS Therapy for Major Depressive Disorder , 2016, Brain Stimulation.

[117]  Malte C Gather,et al.  Arrays of microscopic organic LEDs for high-resolution optogenetics , 2016, Science Advances.

[118]  Daniel Palanker,et al.  Optimization of return electrodes in neurostimulating arrays , 2016, Journal of neural engineering.

[119]  M. Kaltenbrunner,et al.  Ultraflexible organic photonic skin , 2016, Science Advances.

[120]  Se-Bum Paik,et al.  Optogenetic Mapping of Functional Connectivity in Freely Moving Mice via Insertable Wrapping Electrode Array Beneath the Skull. , 2016, ACS nano.

[121]  Wei Fan,et al.  Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications. , 2016, ACS nano.

[122]  G. Buzsáki,et al.  Monolithically Integrated μLEDs on Silicon Neural Probes for High-Resolution Optogenetic Studies in Behaving Animals , 2015, Neuron.

[123]  M. R. Hoque,et al.  Near-infrared (NIR) up-conversion optogenetics , 2015, Scientific Reports.

[124]  John A Rogers,et al.  Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics , 2015, Nature Biotechnology.

[125]  M. Gather,et al.  Controlling the Behavior of Single Live Cells with High Density Arrays of Microscopic OLEDs , 2015, Advanced materials.

[126]  Ahmed Wasif Reza,et al.  Wireless powering by magnetic resonant coupling: Recent trends in wireless power transfer system and its applications , 2015 .

[127]  Hung Cao,et al.  Power Approaches for Implantable Medical Devices , 2015, Sensors.

[128]  Sadik Esener,et al.  Sonogenetics is a non-invasive approach to activating neurons in Caenorhabditis elegans , 2015, Nature Communications.

[129]  E. Boyden Optogenetics and the future of neuroscience , 2015, Nature Neuroscience.

[130]  K. L. Montgomery,et al.  Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice , 2015, Nature Methods.

[131]  J. Y. Sim,et al.  Wireless Optofluidic Systems for Programmable In Vivo Pharmacology and Optogenetics , 2015, Cell.

[132]  John A Rogers,et al.  Ultraminiaturized photovoltaic and radio frequency powered optoelectronic systems for wireless optogenetics , 2015, Journal of neural engineering.

[133]  F. Bezanilla,et al.  Photosensitivity of Neurons Enabled by Cell-Targeted Gold Nanoparticles , 2015, Neuron.

[134]  Polina Anikeeva,et al.  Wireless magnetothermal deep brain stimulation , 2015, Science.

[135]  D. Palanker,et al.  Photovoltaic restoration of sight with high visual acuity , 2015, Nature Medicine.

[136]  Michael Häusser,et al.  Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo , 2014, Nature Methods.

[137]  E. Sernagor,et al.  Semiconductor Nanorod–Carbon Nanotube Biomimetic Films for Wire-Free Photostimulation of Blind Retinas , 2014, Nano letters.

[138]  Kyungsik Eom,et al.  Enhanced Infrared Neural Stimulation using Localized Surface Plasmon Resonance of Gold Nanorods , 2014 .

[139]  Sangjin Yoo,et al.  Photothermal inhibition of neural activity with near-infrared-sensitive nanotransducers. , 2014, ACS nano.

[140]  Warren M. Grill,et al.  Mechanisms and models of spinal cord stimulation for the treatment of neuropathic pain , 2014, Brain Research.

[141]  J. Assad,et al.  Multipoint-Emitting Optical Fibers for Spatially Addressable In Vivo Optogenetics , 2014, Neuron.

[142]  Yuji Tanabe,et al.  Wireless power transfer to deep-tissue microimplants , 2014, Proceedings of the National Academy of Sciences.

[143]  R. Howland,et al.  Vagus Nerve Stimulation , 2014, Current Behavioral Neuroscience Reports.

[144]  A. Williams,et al.  Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans , 2014, Nature Neuroscience.

[145]  John A Rogers,et al.  Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics , 2013, Nature Protocols.

[146]  Takao Someya,et al.  Ultrathin, highly flexible and stretchable PLEDs , 2013, Nature Photonics.

[147]  M. Häusser,et al.  Targeting neurons and photons for optogenetics , 2013, Nature Neuroscience.

[148]  Yei Hwan Jung,et al.  Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics , 2013, Science.

[149]  A. Sher,et al.  Photovoltaic retinal prosthesis: implant fabrication and performance , 2012, Journal of neural engineering.

[150]  A. Sher,et al.  Photovoltaic Retinal Prosthesis with High Pixel Density , 2012, Nature Photonics.

[151]  Mikhail G. Shapiro,et al.  Infrared light excites cells by changing their electrical capacitance , 2012, Nature Communications.

[152]  Hongxing Jiang,et al.  III-Nitride full-scale high-resolution microdisplays , 2011 .

[153]  Lief E. Fenno,et al.  The development and application of optogenetics. , 2011, Annual review of neuroscience.

[154]  F. Horak,et al.  Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. , 2011, Archives of neurology.

[155]  Manuela Schmidt,et al.  Piezo1 and Piezo2 Are Essential Components of Distinct Mechanically Activated Cation Channels , 2010, Science.

[156]  Karl Deisseroth,et al.  Genetic Reactivation of Cone Photoreceptors Restores Visual Responses in Retinitis Pigmentosa , 2010, Science.

[157]  M. C. Mancini,et al.  Bioimaging: second window for in vivo imaging. , 2009, Nature nanotechnology.

[158]  M. Häusser,et al.  Electrophysiology in the age of light , 2009, Nature.

[159]  I. Moreels,et al.  Size-dependent optical properties of colloidal PbS quantum dots. , 2009, ACS nano.

[160]  Yonggang Huang,et al.  Printed Assemblies of Inorganic Light-Emitting Diodes for Deformable and Semitransparent Displays , 2009, Science.

[161]  J. T. Henriksson,et al.  Dimensions and morphology of the cornea in three strains of mice. , 2009, Investigative ophthalmology & visual science.

[162]  Xiaogang Peng,et al.  Synthesis of Cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and color-tunable NIR emitters. , 2009, Journal of the American Chemical Society.

[163]  Murtaza Z Mogri,et al.  Optical Deconstruction of Parkinsonian Neural Circuitry , 2009, Science.

[164]  H. Markram,et al.  Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts. , 2009, Nature nanotechnology.

[165]  Douglas S Kim,et al.  Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration , 2008, Nature Neuroscience.

[166]  M. Kringelbach,et al.  Translational principles of deep brain stimulation , 2007, Nature Reviews Neuroscience.

[167]  M. Soljačić,et al.  Wireless Power Transfer via Strongly Coupled Magnetic Resonances , 2007, Science.

[168]  A. Dizhoor,et al.  Ectopic Expression of a Microbial-Type Rhodopsin Restores Visual Responses in Mice with Photoreceptor Degeneration , 2006, Neuron.

[169]  G. Buzsáki Rhythms of the brain , 2006 .

[170]  Felice Shieh,et al.  Challenges in quantum dot-neuron active interfacing. , 2005, Talanta: The International Journal of Pure and Applied Analytical Chemistry.

[171]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[172]  A. N. Bashkatov,et al.  Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm , 2005 .

[173]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[174]  Paul R. Lockman,et al.  Nanoparticle Surface Charges Alter Blood–Brain Barrier Integrity and Permeability , 2004, Journal of drug targeting.

[175]  David E. Clapham,et al.  TRP channels as cellular sensors , 2003, Nature.

[176]  M. Bawendi,et al.  Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. , 2003, Journal of the American Chemical Society.

[177]  D. McKemy,et al.  Identification of a cold receptor reveals a general role for TRP channels in thermosensation , 2002, Nature.

[178]  Satoshi Kawata,et al.  An implantable power supply with an optically rechargeable lithium battery , 2001, IEEE Transactions on Biomedical Engineering.