Oxygen reduction reaction of PrBaCo2−xFexO5+δ compounds as H+-SOFC cathodes: correlation with physical properties

PrBaCo2−xFexO5+δ solid solution is investigated in order to understand the Oxygen Reduction Reaction (ORR) and water formation occurring at the H+-SOFC cathode. Careful attention is paid to the study of the physical properties as a function of composition by Thermogravimetry Analysis (TGA), Mossbauer spectroscopy, electrical conductivity and Seebeck coefficient measurements, with the aim to establish the correlation existing with the ORR activity for these Mixed Ionic Electronic Conductors (MIEC). The oxygen diffusion coefficients are determined by Electrical Conductivity Relaxation (ECR) and Isotopic Exchange Depth Profile (IEDP) coupled with Secondary Ion Mass Spectroscopy (SIMS) methods. An electrochemical study is then carried out and shows that the amount of oxygen vacancies is the most influential parameter. Indeed, it allows some hydration of PrBaCo2O5+δ oxide and the formation of protonic defects that can induce protonic diffusivity in these MIEC oxides.

[1]  Alexis Grimaud,et al.  Hydration and transport properties of the Pr2−xSrxNiO4+δ compounds as H+-SOFC cathodes , 2012 .

[2]  Albert Tarancón,et al.  Anisotropic oxygen diffusion in PrBaCo2O5.5 double perovskites , 2012 .

[3]  J. Kilner,et al.  Anisotropic Oxygen Ion Diffusion in Layered PrBaCo2O5+δ , 2012 .

[4]  A. Grimaud,et al.  Transport properties and in-situ Raman spectroscopy study of BaCe0.9Y0.1O3 − δ as a function of water partial pressures , 2011 .

[5]  V. Cherepanov,et al.  Structure, nonstoichiometry and thermal expansion of the NdBa(Co,Fe)2O5+δ layered perovskite , 2011 .

[6]  A. Chroneos,et al.  Oxygen ion diffusion in cation ordered/disordered GdBaCo2O5+δ , 2011 .

[7]  J. Maier,et al.  Surface Kinetics and Mechanism of Oxygen Incorporation Into Ba1 − x Sr x Co y Fe1 − y O3 − δ SOFC Microelectrodes , 2010 .

[8]  J. Hermet,et al.  Molecular dynamics simulations of oxygen diffusion in GdBaCo2O5.5 , 2010 .

[9]  S. Fourcade,et al.  Perovskite and A2MO4-type oxides as new cathode materials for protonic solid oxide fuel cells , 2010 .

[10]  Zongping Shao,et al.  Silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3-δ as cathodes for a proton conducting solid-oxide fuel cell , 2010 .

[11]  G. C. Mather,et al.  Influence of porosity on the bulk and grain-boundary electrical properties of Gd-doped ceria , 2010 .

[12]  Wei Liu,et al.  Cathode processes and materials for solid oxide fuel cells with proton conductors as electrolytes , 2010 .

[13]  T. He,et al.  Performances of LnBaCo2O5+x-Ce0.8Sm0.2O1.9 composite cathodes for intermediate-temperature solid oxide fuel cells , 2010 .

[14]  Fei He,et al.  Cathode reaction models and performance analysis of Sm0.5Sr0.5CoO3−δ–BaCe0.8Sm0.2O3−δ composite cathode for solid oxide fuel cells with proton conducting electrolyte , 2009 .

[15]  U. Starke,et al.  Oxygen tracer diffusion in dense Ba0.5Sr0.5Co0.8Fe0.2O3−δ films , 2009 .

[16]  J. Kilner,et al.  Layered perovskites as promising cathodes for intermediate temperature solid oxide fuel cells , 2007 .

[17]  C. Mims,et al.  Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered A cations , 2007 .

[18]  G. Choi,et al.  Electrical conductivity of thick film YSZ , 2006 .

[19]  J. Bassat,et al.  Oxygen diffusion and transport properties in non-stoichiometric Ln2 − xNiO4 + δ oxides , 2005 .

[20]  N. Brandon,et al.  Oxygen transport in La0.6Sr0.4Co0.2Fe0.8O3−δ/Ce0.8Ge0.2O2−x composite cathode for IT-SOFCs , 2004 .

[21]  Y. Larring,et al.  Hydrogen in oxides. , 2004, Dalton transactions.

[22]  M. Pouchard,et al.  Anisotropic ionic transport properties in La2NiO4+δ single crystals , 2004 .

[23]  J. Bassat,et al.  Oxygen transport properties of La2Ni1−xCuxO4+δ mixed conducting oxides , 2003 .

[24]  B. Steele,et al.  Materials for fuel-cell technologies , 2001, Nature.

[25]  W. Sitte,et al.  Oxygen nonstoichiometry and ionic transport properties of La0.4Sr0.6CoO3-delta . , 2001, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[26]  B. Abeles,et al.  The effect of the magnitude of the oxygen partial pressure change in electrical conductivity relaxation measurements: oxygen transport kinetics in La0.5Sr0.5CoO3−δ , 2001 .

[27]  G. Meng,et al.  Electrode materials for intermediate temperature proton-conducting fuel cells , 2000 .

[28]  J. Maier On the correlation of macroscopic and microscopic rate constants in solid state chemistry , 1998 .

[29]  H. Iwahara Proton conducting ceramics and their applications , 1996 .

[30]  I. Yasuda,et al.  Electrical Conductivity and Chemical Diffusion Coefficient of Strontium-Doped Lanthanum Manganites , 1996 .

[31]  G. Villeneuve,et al.  Dispositif de mesures du pouvoir thermoélectrique sur des échantillons très résistants entre 4 et 300 K , 1980 .

[32]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[33]  A. Grimaud,et al.  Hydration Properties and Rate Determining Steps of the Oxygen Reduction Reaction of Perovskite-Related Oxides as H+-SOFC Cathodes , 2012 .

[34]  E. Wachsman,et al.  Mixed Protonic/Electronic Conductor Cathodes for Intermediate Temperature SOFCs Based on Proton Conducting Electrolytes , 2009 .

[35]  J. Bassat,et al.  Chemical oxygen diffusion coefficient measurement by conductivity relaxation—correlation between tracer diffusion coefficient and chemical diffusion coefficient , 2004 .

[36]  W. L. Worrell,et al.  Electrochemical Characterization of Mixed Conducting Ba(Ce0.8−y Pr y Gd0.2)O2.9 Cathodes , 2001 .

[37]  B. Ma,et al.  Determination of chemical diffusion coefficient of SrFeCo0.5Ox by the conductivity relaxation method , 1996 .