Beta-lactam antibiotic offers neuroprotection in a spinal muscular atrophy model by multiple mechanisms

[1]  F. Sörgel,et al.  Penetration of Drugs through the Blood-Cerebrospinal Fluid/Blood-Brain Barrier for Treatment of Central Nervous System Infections , 2010, Clinical Microbiology Reviews.

[2]  C. Lorson,et al.  Spinal muscular atrophy: mechanisms and therapeutic strategies. , 2010, Human molecular genetics.

[3]  S. Jablonka,et al.  Valproic acid blocks excitability in SMA type I mouse motor neurons , 2009, Neurobiology of Disease.

[4]  H. Kornblum,et al.  Induction of Nrf2 and xCT are involved in the action of the neuroprotective antibiotic ceftriaxone in vitro , 2009, Journal of neurochemistry.

[5]  S. Salani,et al.  Motoneuron Transplantation Rescues the Phenotype of SMARD1 (Spinal Muscular Atrophy with Respiratory Distress Type 1) , 2009, The Journal of Neuroscience.

[6]  C. Beattie,et al.  Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? , 2009, Nature Reviews Neuroscience.

[7]  M. Bowerman,et al.  SMN, profilin IIa and plastin 3: A link between the deregulation of actin dynamics and SMA pathogenesis , 2009, Molecular and Cellular Neuroscience.

[8]  J L Haines,et al.  Supporting Online Material Materials and Methods Figs. S1 to S7 Tables S1 to S4 References Mutations in the Fus/tls Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis , 2022 .

[9]  Xun Hu,et al.  Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6 , 2009, Science.

[10]  C. Mello,et al.  The Time to Demand Funding , 2009, Science.

[11]  DelindaA . Johnson,et al.  Nrf2 Activation in Astrocytes Protects against Neurodegeneration in Mouse Models of Familial Amyotrophic Lateral Sclerosis , 2008, The Journal of Neuroscience.

[12]  I-Fan Wang,et al.  TDP-43 Overexpression Enhances Exon 7 Inclusion during the Survival of Motor Neuron Pre-mRNA Splicing* , 2008, Journal of Biological Chemistry.

[13]  S. Salani,et al.  Neural stem cell transplantation can ameliorate the phenotype of a mouse model of spinal muscular atrophy. , 2008, The Journal of clinical investigation.

[14]  M. Winberg,et al.  Identification of a battery of tests for drug candidate evaluation in the SMNΔ7 neonate model of spinal muscular atrophy , 2008, Experimental Neurology.

[15]  Lili Wan,et al.  SMN Deficiency Causes Tissue-Specific Perturbations in the Repertoire of snRNAs and Widespread Defects in Splicing , 2008, Cell.

[16]  P. Fisher,et al.  Mechanism of Ceftriaxone Induction of Excitatory Amino Acid Transporter-2 Expression and Glutamate Uptake in Primary Human Astrocytes* , 2008, Journal of Biological Chemistry.

[17]  B. Wirth,et al.  Plastin 3 Is a Protective Modifier of Autosomal Recessive Spinal Muscular Atrophy , 2008, Science.

[18]  L. Pellizzoni,et al.  Ribonucleoprotein Assembly Defects Correlate with Spinal Muscular Atrophy Severity and Preferentially Affect a Subset of Spliceosomal snRNPs , 2007, PloS one.

[19]  Jonathan D. Edwards,et al.  Abnormal motor phenotype in the SMNΔ7 mouse model of spinal muscular atrophy , 2007, Neurobiology of Disease.

[20]  A. MacKenzie,et al.  Histologic and transcriptional assessment of a mild SMA model , 2007, Neurological research.

[21]  K. Fischbeck,et al.  Trichostatin A increases SMN expression and survival in a mouse model of spinal muscular atrophy. , 2007, The Journal of clinical investigation.

[22]  H. Wichterle,et al.  Multiprotein Complexes of the Survival of Motor Neuron Protein SMN with Gemins Traffic to Neuronal Processes and Growth Cones of Motor Neurons , 2006, The Journal of Neuroscience.

[23]  Ming-Shiun Tsai,et al.  Abolishing Bax-dependent apoptosis shows beneficial effects on spinal muscular atrophy model mice. , 2006, Molecular therapy : the journal of the American Society of Gene Therapy.

[24]  B. Wirth,et al.  Mildly affected patients with spinal muscular atrophy are partially protected by an increased SMN2 copy number , 2006, Human Genetics.

[25]  J. Melki,et al.  Activation of RNA metabolism-related genes in mouse but not human tissues deficient in SMN. , 2006, Physiological genomics.

[26]  P. Vidal,et al.  Regular Exercise Prolongs Survival in a Type 2 Spinal Muscular Atrophy Model Mouse , 2005, The Journal of Neuroscience.

[27]  M. Baptista,et al.  Mutant SOD1 alters the motor neuronal transcriptome: implications for familial ALS. , 2005, Brain : a journal of neurology.

[28]  J. Yong,et al.  The Survival of Motor Neurons Protein Determines the Capacity for snRNP Assembly: Biochemical Deficiency in Spinal Muscular Atrophy , 2005, Molecular and Cellular Biology.

[29]  K. Fischbeck,et al.  The role of histone acetylation in SMN gene expression. , 2005, Human molecular genetics.

[30]  U. Monani,et al.  SMNDelta7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN. , 2005, Human molecular genetics.

[31]  P. Fisher,et al.  β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression , 2005, Nature.

[32]  U. Monani,et al.  Lentivector-mediated SMN replacement in a mouse model of spinal muscular atrophy. , 2004, The Journal of clinical investigation.

[33]  M. Butchbach,et al.  Perspectives on models of spinal muscular atrophy for drug discovery , 2004 .

[34]  Jeongsik Yong,et al.  Why do cells need an assembly machine for RNA-protein complexes? , 2004, Trends in cell biology.

[35]  Michael Sendtner,et al.  Smn, the spinal muscular atrophy–determining gene product, modulates axon growth and localization of β-actin mRNA in growth cones of motoneurons , 2003, The Journal of cell biology.

[36]  S. Iannaccone,et al.  A phase 1 trial of riluzole in spinal muscular atrophy. , 2003, Archives of neurology.

[37]  K. Fischbeck,et al.  Valproic acid increases SMN levels in spinal muscular atrophy patient cells , 2003, Annals of neurology.

[38]  Y. Hofmann,et al.  Valproic acid increases the SMN2 protein level: a well-known drug as a potential therapy for spinal muscular atrophy. , 2003, Human molecular genetics.

[39]  W. Schlote,et al.  Classical infantile spinal muscular atrophy with SMN deficiency causes sensory neuronopathy , 2003, Neurology.

[40]  J. Yong,et al.  Essential Role for the SMN Complex in the Specificity of snRNP Assembly , 2002, Science.

[41]  N. M. Reddy,et al.  Higher order arrangement of the eukaryotic nuclear bodies , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[42]  U. Monani,et al.  The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn(-/-) mice and results in a mouse with spinal muscular atrophy. , 2000, Human molecular genetics.

[43]  J. McPherson,et al.  A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. , 1999, Human molecular genetics.

[44]  C. Lorson,et al.  A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[45]  J. Melki,et al.  The role of the SMN gene in proximal spinal muscular atrophy. , 1998, Human molecular genetics.

[46]  A. Smith,et al.  Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[47]  A. Burghes When is a deletion not a deletion? When it is converted. , 1997, American journal of human genetics.

[48]  J. Nadeau,et al.  Cloning, characterization, and copy number of the murine survival motor neuron gene: homolog of the spinal muscular atrophy-determining gene. , 1997, Genome research.

[49]  G. Vrbóva,et al.  Possible strategies for treatment of SMA patients: A neurobiologist's view , 1995, Neuromuscular Disorders.

[50]  J. Weissenbach,et al.  Identification and characterization of a spinal muscular atrophy-determining gene , 1995, Cell.

[51]  J. Rothstein,et al.  Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[52]  A. Bretscher Fimbrin is a cytoskeletal protein that crosslinks F-actin in vitro. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[53]  D. F. Roberts,et al.  The Genetic Component in Child Mortality , 1970, Archives of disease in childhood.

[54]  L. Goodman,et al.  THE PHARMACOLOGICAL BASIS OF THERAPEUTICS , 1966 .

[55]  K. Foust,et al.  Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes , 2009, Nature Biotechnology.

[56]  S. Minucci,et al.  Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer , 2006, Nature Reviews Cancer.

[57]  E. Bertini,et al.  Phenylbutyrate increases SMN expression in vitro: relevance for treatment of spinal muscular atrophy , 2004, European Journal of Human Genetics.