Bipartite perfect matching is in quasi-NC

We show that the bipartite perfect matching problem is in quasi- NC2. That is, it has uniform circuits of quasi-polynomial size nO(logn), and O(log2 n) depth. Previously, only an exponential upper bound was known on the size of such circuits with poly-logarithmic depth. We obtain our result by an almost complete derandomization of the famous Isolation Lemma when applied to yield an efficient randomized parallel algorithm for the bipartite perfect matching problem.

[1]  Manindra Agrawal,et al.  The Polynomially Bounded Perfect Matching Problem Is in NC 2 , 2007, STACS.

[2]  Shafi Goldwasser,et al.  Perfect Bipartite Matching in Pseudo-Deterministic RNC , 2015, Electron. Colloquium Comput. Complex..

[3]  Noga Alon,et al.  The Moore Bound for Irregular Graphs , 2002, Graphs Comb..

[4]  L FredmanMichael,et al.  Storing a Sparse Table with 0(1) Worst Case Access Time , 1984 .

[5]  David G. Harris,et al.  Tight bounds and conjectures for the isolation lemma , 2016, 1604.07035.

[6]  János Komlós,et al.  Storing a sparse table with O(1) worst case access time , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[7]  János Komlós,et al.  Storing a sparse table with O(1) worst case access time , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[8]  Wojciech Rytter,et al.  Fast parallel algorithms for graph matching problems , 1998 .

[9]  Nisheeth K. Vishnoi,et al.  Isolating a Vertex via Lattices: Polytopes with Totally Unimodular Faces , 2017, Electron. Colloquium Comput. Complex..

[10]  László Lovász,et al.  On determinants, matchings, and random algorithms , 1979, FCT.

[11]  Alok Aggarwal,et al.  A random NC algorithm for depth first search , 1987, Comb..

[12]  Allan Borodin,et al.  Parallel Computation for Well-Endowed Rings and Space-Bounded Probabilistic Machines , 1984, Inf. Control..

[13]  Meena Mahajan,et al.  A new NC-algorithm for finding a perfect matching in bipartite planar and small genus graphs (extended abstract) , 2000, STOC '00.

[14]  Aravind Srinivasan,et al.  Randomness-optimal unique element isolation, with applications to perfect matching and related problems , 1993, SIAM J. Comput..

[15]  Stephen A. Cook,et al.  Log Depth Circuits for Division and Related Problems , 1986, SIAM J. Comput..

[16]  David R. Karger,et al.  An NC Algorithm for Minimum Cuts , 1997, SIAM J. Comput..

[17]  Raghunath Tewari,et al.  Trading Determinism for Time in Space Bounded Computations , 2016, Electron. Colloquium Comput. Complex..

[18]  Noam Ta-Shma A simple proof of the Isolation Lemma , 2015, Electron. Colloquium Comput. Complex..

[19]  Vijay V. Vazirani,et al.  NC Algorithms for Computing the Number of Perfect Matchings in K_3,3-Free Graphs and Related Problems , 1989, Inf. Comput..

[20]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[21]  Shafi Goldwasser,et al.  Bipartite Perfect Matching in Pseudo-Deterministic NC , 2017, ICALP.

[22]  Stuart J. Berkowitz,et al.  On Computing the Determinant in Small Parallel Time Using a Small Number of Processors , 1984, Inf. Process. Lett..

[23]  M. Rabin Probabilistic algorithm for testing primality , 1980 .

[24]  Marek Karpinski,et al.  Matching and Multidimensional Matching in Chordal and Strongly Chordal Graphs , 1998, Discret. Appl. Math..

[25]  Jochen Messner,et al.  Exact Perfect Matching in Complete Graphs , 2013, Electron. Colloquium Comput. Complex..

[26]  Thomas Thierauf,et al.  Linear Matroid Intersection is in Quasi-NC , 2017, computational complexity.

[27]  Zhi-Zhong Chen,et al.  Reducing randomness via irrational numbers , 1997, STOC '97.

[28]  Raghav Kulkarni,et al.  Deterministically Isolating a Perfect Matching in Bipartite Planar Graphs , 2009, Theory of Computing Systems.

[29]  M. Nair On Chebyshev-Type Inequalities for Primes , 1982 .

[30]  Piotr Sankowski,et al.  Planar Perfect Matching is in NC , 2017, ArXiv.

[31]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[32]  Chung-Piaw Teo,et al.  The number of shortest cycles and the chromatic uniqueness of a graph , 1992, J. Graph Theory.

[33]  L. Lovász Matching Theory (North-Holland mathematics studies) , 1986 .

[34]  Aravind Srinivasan,et al.  Randomness-Optimal Unique Element Isolation with Applications to Perfect Matching and Related Problems , 1995, SIAM J. Comput..

[35]  Sartaj Sahni,et al.  Parallel Matrix and Graph Algorithms , 1981, SIAM J. Comput..

[36]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[37]  Eli Upfal,et al.  Constructing a perfect matching is in random NC , 1985, STOC '85.

[38]  Vikraman Arvind,et al.  Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size , 2008, APPROX-RANDOM.

[39]  Raghunath Tewari,et al.  Green's theorem and isolation in planar graphs , 2012, Inf. Comput..

[40]  Gary L. Miller,et al.  Flow in Planar Graphs with Multiple Sources and Sinks , 1995, SIAM J. Comput..

[41]  Richard J. Lipton,et al.  A Probabilistic Remark on Algebraic Program Testing , 1978, Inf. Process. Lett..

[42]  Marek Karpinski,et al.  The matching problem for bipartite graphs with polynomially bounded permanents is in NC , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[43]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[44]  David A. Mix Barrington Quasipolynomial size circuit classes , 1992, [1992] Proceedings of the Seventh Annual Structure in Complexity Theory Conference.

[45]  L. Csanky,et al.  Fast parallel matrix inversion algorithms , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[46]  Vijay V. Vazirani,et al.  Matching is as easy as matrix inversion , 1987, STOC.

[47]  Daniel A. Spielman,et al.  Randomness efficient identity testing of multivariate polynomials , 2001, STOC '01.

[48]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[49]  Vijay V. Vazirani,et al.  NC Algorithms for Computing the Number of Perfect Matchings in K3, 3-free Graphs and Related Problems , 1988, SWAT.

[50]  Ola Svensson,et al.  The Matching Problem in General Graphs Is in Quasi-NC , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[51]  A. Aggarwal,et al.  Parallel depth-first search in general directed graphs , 1989, STOC '89.

[52]  Vijay V. Vazirani,et al.  Randomized parallel algorithms for matroid union and intersection, with applications to arboresences and edge-disjoint spanning trees , 1992, SODA '92.

[53]  Marek Karpinski,et al.  Subtree Isomorphism is NC Reducible to Bipartite Perfect Matching , 1989, Inf. Process. Lett..