A New Elementary Geometric Approach to Option Pricing Bounds in Discrete Time Models
暂无分享,去创建一个
[1] P. Ritchken. On Option Pricing Bounds , 1985 .
[2] N. Sukumar. Construction of polygonal interpolants: a maximum entropy approach , 2004 .
[3] P. Boyle. A Lattice Framework for Option Pricing with Two State Variables , 1988, Journal of Financial and Quantitative Analysis.
[4] Mark Broadie,et al. ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications , 2004, Manag. Sci..
[5] J. Hull. Fundamentals of Futures and Options Markets , 2001 .
[6] Wai F. Chiu. Binomial Models in Finance. John van der Hoek and Robert J. Elliott , 2006 .
[7] Giacomo Scandolo,et al. Assessing Financial Model Risk , 2013, Eur. J. Oper. Res..
[8] Kumar Muthuraman,et al. An approximate moving boundary method for American option pricing , 2015, Eur. J. Oper. Res..
[9] J. Cochrane,et al. Beyond Arbitrage: 'Good Deal' Asset Price Bounds in Incomplete Markets , 1996 .
[10] Robert J. Elliott,et al. Binomial Models in Finance , 2005 .
[11] Ahmet Camcι,et al. Pricing American contingent claims by stochastic linear programming , 2009 .
[12] Jitka Dupacová,et al. Scenarios for Multistage Stochastic Programs , 2000, Ann. Oper. Res..
[13] M. Broadie,et al. American Capped Call Options on Dividend-Paying Assets , 1995 .
[14] Walter Willinger,et al. The analysis of finite security markets using martingales , 1987, Advances in Applied Probability.
[15] Jack Sklansky,et al. Finding the convex hull of a simple polygon , 1982, Pattern Recognit. Lett..
[16] Kai Hormann,et al. A general construction of barycentric coordinates over convex polygons , 2006, Adv. Comput. Math..
[17] T. Björk. Arbitrage Theory in Continuous Time , 2019 .
[18] Sjur Didrik Flåm,et al. Option pricing by mathematical programming , 2008 .
[19] M. Broadie,et al. American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods , 1996 .
[20] Mustafa Ç. Pinar,et al. Expected gain-loss pricing and hedging of contingent claims in incomplete markets by linear programming , 2010, Eur. J. Oper. Res..
[21] David M. Kreps,et al. Martingales and arbitrage in multiperiod securities markets , 1979 .
[22] Kai Hormann,et al. Maximum Entropy Coordinates for Arbitrary Polytopes , 2008, Comput. Graph. Forum.
[23] Michael Hanke,et al. No-arbitrage bounds for financial scenarios , 2014, Eur. J. Oper. Res..
[24] P. Ritchken,et al. Option Bounds with Finite Revision Opportunities , 1988 .
[25] Assessing Financial Model Risk , 2013 .
[26] Calibrated American option pricing by stochastic linear programming , 2013 .
[27] Alan J. King,et al. Duality and martingales: a stochastic programming perspective on contingent claims , 2002, Math. Program..
[28] Silvia Muzzioli,et al. On the no-arbitrage condition in option implied trees , 2009, Eur. J. Oper. Res..
[29] Bernard Lapeyre,et al. Introduction to Stochastic Calculus Applied to Finance , 2007 .
[30] M. Broadie,et al. Option Pricing: Valuation Models and Applications , 2004 .