A New Elementary Geometric Approach to Option Pricing Bounds in Discrete Time Models

The aim of this paper is to provide a new straightforward measure-free methodology based on convex hulls to determine the no-arbitrage pricing bounds of an option (European or American). The pedagogical interest of our methodology is also briefly discussed. The central result, which is elementary, is presented for a one period model and is subsequently used for multiperiod models. It shows that a certain point, called the forward point, must lie inside a convex polygon. Multiperiod models are then considered and the pricing bounds of a put option (European and American) are explicitly computed. We then show that the barycentric coordinates of the forward point can be interpreted as a martingale pricing measure. An application is provided for the trinomial model where the pricing measure has a simple geometric interpretation in terms of areas of triangles. Finally, we consider the case of entropic barycentric coordinates in a multi asset framework.

[1]  P. Ritchken On Option Pricing Bounds , 1985 .

[2]  N. Sukumar Construction of polygonal interpolants: a maximum entropy approach , 2004 .

[3]  P. Boyle A Lattice Framework for Option Pricing with Two State Variables , 1988, Journal of Financial and Quantitative Analysis.

[4]  Mark Broadie,et al.  ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications , 2004, Manag. Sci..

[5]  J. Hull Fundamentals of Futures and Options Markets , 2001 .

[6]  Wai F. Chiu Binomial Models in Finance. John van der Hoek and Robert J. Elliott , 2006 .

[7]  Giacomo Scandolo,et al.  Assessing Financial Model Risk , 2013, Eur. J. Oper. Res..

[8]  Kumar Muthuraman,et al.  An approximate moving boundary method for American option pricing , 2015, Eur. J. Oper. Res..

[9]  J. Cochrane,et al.  Beyond Arbitrage: 'Good Deal' Asset Price Bounds in Incomplete Markets , 1996 .

[10]  Robert J. Elliott,et al.  Binomial Models in Finance , 2005 .

[11]  Ahmet Camcι,et al.  Pricing American contingent claims by stochastic linear programming , 2009 .

[12]  Jitka Dupacová,et al.  Scenarios for Multistage Stochastic Programs , 2000, Ann. Oper. Res..

[13]  M. Broadie,et al.  American Capped Call Options on Dividend-Paying Assets , 1995 .

[14]  Walter Willinger,et al.  The analysis of finite security markets using martingales , 1987, Advances in Applied Probability.

[15]  Jack Sklansky,et al.  Finding the convex hull of a simple polygon , 1982, Pattern Recognit. Lett..

[16]  Kai Hormann,et al.  A general construction of barycentric coordinates over convex polygons , 2006, Adv. Comput. Math..

[17]  T. Björk Arbitrage Theory in Continuous Time , 2019 .

[18]  Sjur Didrik Flåm,et al.  Option pricing by mathematical programming , 2008 .

[19]  M. Broadie,et al.  American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods , 1996 .

[20]  Mustafa Ç. Pinar,et al.  Expected gain-loss pricing and hedging of contingent claims in incomplete markets by linear programming , 2010, Eur. J. Oper. Res..

[21]  David M. Kreps,et al.  Martingales and arbitrage in multiperiod securities markets , 1979 .

[22]  Kai Hormann,et al.  Maximum Entropy Coordinates for Arbitrary Polytopes , 2008, Comput. Graph. Forum.

[23]  Michael Hanke,et al.  No-arbitrage bounds for financial scenarios , 2014, Eur. J. Oper. Res..

[24]  P. Ritchken,et al.  Option Bounds with Finite Revision Opportunities , 1988 .

[25]  Assessing Financial Model Risk , 2013 .

[26]  Calibrated American option pricing by stochastic linear programming , 2013 .

[27]  Alan J. King,et al.  Duality and martingales: a stochastic programming perspective on contingent claims , 2002, Math. Program..

[28]  Silvia Muzzioli,et al.  On the no-arbitrage condition in option implied trees , 2009, Eur. J. Oper. Res..

[29]  Bernard Lapeyre,et al.  Introduction to Stochastic Calculus Applied to Finance , 2007 .

[30]  M. Broadie,et al.  Option Pricing: Valuation Models and Applications , 2004 .