Time-delayed dynamic neural network-based model for hysteresis behavior of shape-memory alloys

Shape-memory alloys (SMAs) have received considerable amount of attentions for their engineering applications in recent years. The hysteresis in SMAs is sensitive to the state-varying tendency and frequency. Utilizing past information to estimate the hysteretic behavior gets increasing attention. In this paper, a time-delayed dynamic neural network (TDDNN) is proposed for modeling hysteresis of SMAs in online applications. By introducing a time delay between the input and output response, the TDDNN considers the time delay’s effect on the hysteresis. This proposed network was applied to a SMA wire actuator. Experimental results demonstrate the effectiveness of TDDNN. The identified results obtained by TDDNN are better than those obtained by dynamic neural network without considering the delay information. It demonstrates the importance of introducing the time delay. The different values of time delay item can also affect TDDNN’s identified results.

[1]  J. Valasek,et al.  Active Length Control of Shape Memory Alloy Wires Using Reinforcement Learning , 2011 .

[2]  M. Brokate,et al.  Hysteresis and Phase Transitions , 1996 .

[3]  M. Moallem,et al.  Tracking Control of an Antagonistic Shape Memory Alloy Actuator Pair , 2009, IEEE Transactions on Control Systems Technology.

[4]  Chi-Kang Lee,et al.  DESIGN OF DYNAMIC NEURAL NETWORKS TO FORECAST SHORT-TERM RAILWAY PASSENGER DEMAND , 2005 .

[5]  Mohammad Al Janaideh,et al.  Generalized Prandtl-Ishlinskii hysteresis model: Hysteresis modeling and its inverse for compensation in smart actuators , 2008, 2008 47th IEEE Conference on Decision and Control.

[6]  G. Song,et al.  A Neural Network Inverse Model for a Shape Memory Alloy Wire Actuator , 2003 .

[7]  S. Hirose,et al.  Mathematical model and experimental verification of shape memory alloy for designing micro actuator , 1991, [1991] Proceedings. IEEE Micro Electro Mechanical Systems.

[8]  Jordan E. Massad,et al.  A homogenized free energy model for hysteresis in thin-film shape memory alloys , 2005 .

[9]  Hui Chen,et al.  Corrigendum to “A neural networks based model for rate-dependent hysteresis for piezoceramic actuators” [Sens. Actuators A 143 (2008) 370–376] , 2008 .

[10]  D. Nash,et al.  On the experimental testing of fine Nitinol wires for medical devices. , 2011, Journal of the mechanical behavior of biomedical materials.

[11]  Hui Chen,et al.  A neural networks based model for rate-dependent hysteresis for piezoceramic actuators , 2008 .

[12]  Vladimir A. Yakubovich,et al.  Linear Matrix Inequalities in System and Control Theory (S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan) , 1995, SIAM Rev..

[13]  R. Ben Mrad,et al.  A model for voltage-to-displacement dynamics in piezoceramic actuators subject to dynamic-voltage excitations , 2002 .

[14]  Hideki Nagai,et al.  Strain sensors of shape memory alloys using acoustic emissions , 2005 .

[15]  Yonghong Tan,et al.  A neural networks based model of inverse hysteresis , 2011 .

[16]  M. Krasnosel’skiǐ,et al.  Systems with Hysteresis , 1989 .

[17]  Gangbing Song,et al.  Precision tracking control of shape memory alloy actuators using neural networks and a sliding-mode based robust controller , 2003 .

[18]  C. Su,et al.  Experimental characterization and modeling of rate-dependent hysteresis of a piezoceramic actuator , 2009 .

[19]  A. Kurdila,et al.  Hysteresis Modeling of SMA Actuators for Control Applications , 1998 .

[20]  S. Shokat,et al.  電界応答性キトサン-ポリ(N,N-ジメチルアクリルアミド)セミIPNゲル膜およびそれらの誘電,熱および膨潤キャラクタリゼーション , 2013 .

[21]  Ciro Visone,et al.  Identification and compensation of Preisach hysteresis models for magnetostrictive actuators , 2001 .

[22]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[23]  Gangbing Song,et al.  Adaptive online inverse control of a shape memory alloy wire actuator using a dynamic neural network , 2013 .

[24]  Yonghong Tan,et al.  Modeling hysteresis in piezoelectric actuators using NARMAX models , 2009 .

[25]  Boris M. Miller,et al.  Impulsive Control in Continuous and Discrete-Continuous Systems , 2003 .

[26]  Elena Villa,et al.  The high potential of shape memory alloys in developing miniature mechanical devices: A review on shape memory alloy mini-actuators , 2010 .

[27]  Nagi G. Naganathan,et al.  Dynamic Preisach modelling of hysteresis for the piezoceramic actuator system , 2001 .

[28]  Victor Etxebarria,et al.  Neural network-based micropositioning control of smart shape memory alloy actuators , 2008, Eng. Appl. Artif. Intell..

[29]  Li Chuntao,et al.  A neural networks model for hysteresis nonlinearity , 2004 .

[30]  Curtis Collins,et al.  A dynamic recurrent neural network-based controller for a rigid–flexible manipulator system , 2004 .

[31]  Chuen-Tsai Sun,et al.  Constructing hysteretic memory in neural networks , 2000, IEEE Trans. Syst. Man Cybern. Part B.

[32]  M. Al Janaideh,et al.  Inverse Rate-Dependent Prandtl–Ishlinskii Model for Feedforward Compensation of Hysteresis in a Piezomicropositioning Actuator , 2013, IEEE/ASME Transactions on Mechatronics.

[33]  Bhaskar D. Rao,et al.  On-line learning algorithms for locally recurrent neural networks , 1999, IEEE Trans. Neural Networks.

[34]  D. Jiles,et al.  Theory of ferromagnetic hysteresis , 1986 .

[35]  Tianyou Chai,et al.  Robust adaptive control of systems with hysteretic nonlinearities: A Duhem hysteresis modelling approach , 2009, AFRICON 2009.

[36]  E Patoor,et al.  Application of Laguerre based adaptive predictive control to Shape Memory Alloy (SMA) Actuator. , 2013, ISA transactions.

[37]  Elena Villa,et al.  Rotational mini-actuator activated by two antagonist shape memory alloy wires , 2010 .

[38]  M. Sreekumar,et al.  Recent advances in nonlinear control technologies for shape memory alloy actuators , 2007 .

[39]  Joshua R. Smith,et al.  A Free Energy Model for Hysteresis in Ferroelectric Materials , 2003, Journal of Intelligent Material Systems and Structures.

[40]  John S. Baras,et al.  Adaptive identification and control of hysteresis in smart materials , 2005, IEEE Transactions on Automatic Control.

[41]  Arianna Menciassi,et al.  Design of a miniature switchable connection system for stochastic modular robots , 2012 .

[42]  Ali Abolmaali,et al.  Hysteresis behavior of t-stub connections with superelastic shape memory fasteners , 2006 .

[43]  Yusuf Oysal,et al.  A comparative study of adaptive load frequency controller designs in a power system with dynamic neural network models , 2005 .

[44]  Kyoung Kwan Ahn,et al.  Modeling and control of shape memory alloy actuators using Preisach model, genetic algorithm and fuzzy logic , 2008 .

[45]  Yonghong Tan,et al.  Modeling rate-dependent hysteresis in piezoelectric actuators using neural networks based on expanded input space method , 2010, IEEE ICCA 2010.

[46]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[47]  Jan-Anders E. Månson,et al.  Performance of self-healing epoxy with microencapsulated healing agent and shape memory alloy wires , 2009 .

[48]  Sylvain Calloch,et al.  Experimental comparison of classical PID and model-free control: Position control of a shape memory alloy active spring , 2011 .

[49]  V. Etxebarria,et al.  Micropositioning using shape memory alloy actuators , 2008 .

[50]  Qingbin Li,et al.  Behavior of concrete beam with embedded shape memory alloy wires , 2006 .