Second-order amplitudes in loop quantum gravity

We explore some second-order amplitudes in loop quantum gravity. In particular, we compute some second-order contributions to diagonal components of the graviton propagator in the large distance limit, using the old version of the Barrett–Crane vertex amplitude. We illustrate the geometry associated with these terms. We find some peculiar phenomena in the large distance behavior of these amplitudes, related to the geometry of the generalized triangulations dual to the Feynman graphs of the corresponding group field theory. In particular, we point out a possible further difficulty with the old Barrett–Crane vertex: it appears to lead to flatness instead of Ricci flatness, at least in some situations. The observation raises the question whether this difficulty remains with the new version of the vertex.

[1]  F. Hellmann,et al.  A Summary of the asymptotic analysis for the EPRL amplitude , 2009, 0909.1882.

[2]  F. Hellmann,et al.  Asymptotic analysis of the EPRL four-simplex amplitude , 2009, 0902.1170.

[3]  L. Freidel,et al.  Quantum geometry from phase space reduction , 2009, 0902.0351.

[4]  C. Rovelli,et al.  LQG propagator: III. The new vertex , 2008, 0812.5018.

[5]  C. Rovelli,et al.  Self-energy and vertex radiative corrections in LQG , 2008, 0810.1714.

[6]  L. Freidel,et al.  Path integral representation of spin foam models of 4D gravity , 2008, 0806.4640.

[7]  C. Rovelli,et al.  Stepping out of homogeneity in loop quantum cosmology , 2008, 0805.4585.

[8]  L. Freidel,et al.  Spin foam models: the dynamics of quantum geometry , 2008 .

[9]  R. Pereira Lorentzian loop quantum gravity vertex amplitude , 2008 .

[10]  E. Livine,et al.  Towards the graviton from spinfoams: The complete perturbative expansion of the 3d toy model , 2008, 0802.3983.

[11]  C. Rovelli,et al.  The Complete LQG propagator. II. Asymptotic behavior of the vertex , 2007, 0711.1284.

[12]  Jonathan Engle,et al.  LQG vertex with finite Immirzi parameter , 2007, 0711.0146.

[13]  Roberto Pereira Lorentzian LQG vertex amplitude , 2007, 0710.5043.

[14]  E. Livine,et al.  Solving the simplicity constraints for spinfoam quantum gravity , 2007, 0708.1915.

[15]  K. Krasnov,et al.  A new spin foam model for 4D gravity , 2007, 0708.1595.

[16]  C. Rovelli,et al.  Flipped spinfoam vertex and loop gravity , 2007, 0708.1236.

[17]  C. Rovelli,et al.  Complete LQG propagator: Difficulties with the Barrett-Crane vertex , 2007, 0708.0883.

[18]  Simone Speziale,et al.  Linearized dynamics from the 4-simplex Regge action , 2007, 0707.4513.

[19]  C. Rovelli,et al.  Loop-quantum-gravity vertex amplitude. , 2007, Physical review letters.

[20]  E. Livine,et al.  New spinfoam vertex for quantum gravity , 2007, 0705.0674.

[21]  E. Livine,et al.  Towards the graviton from spinfoams: Higher order corrections in the 3D toy model , 2006, gr-qc/0605123.

[22]  C. Rovelli,et al.  Graviton propagator in loop quantum gravity , 2006, Classical and Quantum Gravity.

[23]  Simone Speziale,et al.  Towards the graviton from spinfoams: the 3d toy model , 2005, gr-qc/0512102.

[24]  C. Rovelli Graviton propagator from background-independent quantum gravity. , 2005, Physical review letters.

[25]  C. Rovelli,et al.  From 3-geometry transition amplitudes to graviton states , 2005, gr-qc/0508007.

[26]  L. Freidel Group Field Theory: An Overview , 2005, hep-th/0505016.

[27]  C. Rovelli,et al.  Particle scattering in loop quantum gravity. , 2005, Physical review letters.

[28]  C. Rovelli Quantum gravity , 2004, Scholarpedia.

[29]  C. Rovelli,et al.  What is a particle? , 2004, gr-qc/0409054.

[30]  L. Doplicher Generalized Tomonaga-Schwinger equation from the Hadamard formula , 2004, gr-qc/0405006.

[31]  C. Rovelli,et al.  GENERALIZED SCHRÖDINGER EQUATION IN EUCLIDEAN FIELD THEORY , 2003, hep-th/0310246.

[32]  C. Rovelli,et al.  Minkowski vacuum in background independent quantum gravity , 2003, gr-qc/0307118.

[33]  R. Oeckl A 'General boundary' formulation for quantum mechanics and quantum gravity , 2003, hep-th/0306025.

[34]  R. Oeckl Schrödinger's cat and the clock: lessons for quantum gravity , 2003, gr-qc/0306007.

[35]  Alejandro Perez,et al.  Spin Foam Models for Quantum Gravity , 2003, gr-qc/0301113.

[36]  C. Rovelli,et al.  Perturbative Finiteness in Spin-Foam Quantum Gravity , 2001 .

[37]  Alejandro Perez,et al.  Finiteness of a spinfoam model for Euclidean quantum general relativity , 2000, gr-qc/0011058.

[38]  Ruth M. Williams,et al.  Gluing 4-simplices: a derivation of the Barrett-Crane spin foam model for Euclidean quantum gravity , 2000, gr-qc/0010031.

[39]  C. Rovelli,et al.  A spin foam model without bubble divergences , 2000, gr-qc/0006107.

[40]  C. Rovelli,et al.  Spacetime as a Feynman diagram: the connection formulation , 2000, gr-qc/0002095.

[41]  C. Rovelli,et al.  Spin foams as Feynman diagrams , 2000, gr-qc/0002083.

[42]  R. Pietri,et al.  Barrett-Crane model from a Boulatov-Ooguri field theory over a homogeneous space , 1999, hep-th/9907154.

[43]  J. Baez An Introduction to spin foam models of quantum gravity and BF theory , 1999, gr-qc/9905087.

[44]  A. Ashtekar,et al.  Quantum Theory of Geometry II: Volume operators , 1997, gr-qc/9711031.

[45]  John C. Baez,et al.  Spin foam models , 1997, gr-qc/9709052.

[46]  L. Crane,et al.  Relativistic spin networks and quantum gravity , 1997, gr-qc/9709028.

[47]  C. Rovelli Loop Quantum Gravity and Black Hole Physics , 1996, gr-qc/9608032.

[48]  A. Ashtekar,et al.  Quantum theory of geometry: I. Area operators , 1996, gr-qc/9602046.

[49]  H. Hamber,et al.  On the quantum corrections to the newtonian potential , 1995, hep-th/9505182.

[50]  C. Rovelli,et al.  Discreteness of area and volume in quantum gravity [Nucl. Phys. B 442 (1995) 593] , 1994, gr-qc/9411005.

[51]  Donoghue,et al.  Leading quantum correction to the Newtonian potential. , 1993, Physical review letters.

[52]  Rovelli,et al.  Knot theory and quantum gravity. , 1988, Physical review letters.

[53]  Carlo Rovelli,et al.  Loop space representation of quantum general relativity , 1988 .

[54]  J. Baez,et al.  An Introduction to Spin Foam Models of BF Theory and Quantum Gravity , 1999 .

[55]  Jerzy Lewandowski,et al.  Quantum theory of geometry: I. Area operators , 1997 .