Second-order amplitudes in loop quantum gravity
暂无分享,去创建一个
[1] F. Hellmann,et al. A Summary of the asymptotic analysis for the EPRL amplitude , 2009, 0909.1882.
[2] F. Hellmann,et al. Asymptotic analysis of the EPRL four-simplex amplitude , 2009, 0902.1170.
[3] L. Freidel,et al. Quantum geometry from phase space reduction , 2009, 0902.0351.
[4] C. Rovelli,et al. LQG propagator: III. The new vertex , 2008, 0812.5018.
[5] C. Rovelli,et al. Self-energy and vertex radiative corrections in LQG , 2008, 0810.1714.
[6] L. Freidel,et al. Path integral representation of spin foam models of 4D gravity , 2008, 0806.4640.
[7] C. Rovelli,et al. Stepping out of homogeneity in loop quantum cosmology , 2008, 0805.4585.
[8] L. Freidel,et al. Spin foam models: the dynamics of quantum geometry , 2008 .
[9] R. Pereira. Lorentzian loop quantum gravity vertex amplitude , 2008 .
[10] E. Livine,et al. Towards the graviton from spinfoams: The complete perturbative expansion of the 3d toy model , 2008, 0802.3983.
[11] C. Rovelli,et al. The Complete LQG propagator. II. Asymptotic behavior of the vertex , 2007, 0711.1284.
[12] Jonathan Engle,et al. LQG vertex with finite Immirzi parameter , 2007, 0711.0146.
[13] Roberto Pereira. Lorentzian LQG vertex amplitude , 2007, 0710.5043.
[14] E. Livine,et al. Solving the simplicity constraints for spinfoam quantum gravity , 2007, 0708.1915.
[15] K. Krasnov,et al. A new spin foam model for 4D gravity , 2007, 0708.1595.
[16] C. Rovelli,et al. Flipped spinfoam vertex and loop gravity , 2007, 0708.1236.
[17] C. Rovelli,et al. Complete LQG propagator: Difficulties with the Barrett-Crane vertex , 2007, 0708.0883.
[18] Simone Speziale,et al. Linearized dynamics from the 4-simplex Regge action , 2007, 0707.4513.
[19] C. Rovelli,et al. Loop-quantum-gravity vertex amplitude. , 2007, Physical review letters.
[20] E. Livine,et al. New spinfoam vertex for quantum gravity , 2007, 0705.0674.
[21] E. Livine,et al. Towards the graviton from spinfoams: Higher order corrections in the 3D toy model , 2006, gr-qc/0605123.
[22] C. Rovelli,et al. Graviton propagator in loop quantum gravity , 2006, Classical and Quantum Gravity.
[23] Simone Speziale,et al. Towards the graviton from spinfoams: the 3d toy model , 2005, gr-qc/0512102.
[24] C. Rovelli. Graviton propagator from background-independent quantum gravity. , 2005, Physical review letters.
[25] C. Rovelli,et al. From 3-geometry transition amplitudes to graviton states , 2005, gr-qc/0508007.
[26] L. Freidel. Group Field Theory: An Overview , 2005, hep-th/0505016.
[27] C. Rovelli,et al. Particle scattering in loop quantum gravity. , 2005, Physical review letters.
[28] C. Rovelli. Quantum gravity , 2004, Scholarpedia.
[29] C. Rovelli,et al. What is a particle? , 2004, gr-qc/0409054.
[30] L. Doplicher. Generalized Tomonaga-Schwinger equation from the Hadamard formula , 2004, gr-qc/0405006.
[31] C. Rovelli,et al. GENERALIZED SCHRÖDINGER EQUATION IN EUCLIDEAN FIELD THEORY , 2003, hep-th/0310246.
[32] C. Rovelli,et al. Minkowski vacuum in background independent quantum gravity , 2003, gr-qc/0307118.
[33] R. Oeckl. A 'General boundary' formulation for quantum mechanics and quantum gravity , 2003, hep-th/0306025.
[34] R. Oeckl. Schrödinger's cat and the clock: lessons for quantum gravity , 2003, gr-qc/0306007.
[35] Alejandro Perez,et al. Spin Foam Models for Quantum Gravity , 2003, gr-qc/0301113.
[36] C. Rovelli,et al. Perturbative Finiteness in Spin-Foam Quantum Gravity , 2001 .
[37] Alejandro Perez,et al. Finiteness of a spinfoam model for Euclidean quantum general relativity , 2000, gr-qc/0011058.
[38] Ruth M. Williams,et al. Gluing 4-simplices: a derivation of the Barrett-Crane spin foam model for Euclidean quantum gravity , 2000, gr-qc/0010031.
[39] C. Rovelli,et al. A spin foam model without bubble divergences , 2000, gr-qc/0006107.
[40] C. Rovelli,et al. Spacetime as a Feynman diagram: the connection formulation , 2000, gr-qc/0002095.
[41] C. Rovelli,et al. Spin foams as Feynman diagrams , 2000, gr-qc/0002083.
[42] R. Pietri,et al. Barrett-Crane model from a Boulatov-Ooguri field theory over a homogeneous space , 1999, hep-th/9907154.
[43] J. Baez. An Introduction to spin foam models of quantum gravity and BF theory , 1999, gr-qc/9905087.
[44] A. Ashtekar,et al. Quantum Theory of Geometry II: Volume operators , 1997, gr-qc/9711031.
[45] John C. Baez,et al. Spin foam models , 1997, gr-qc/9709052.
[46] L. Crane,et al. Relativistic spin networks and quantum gravity , 1997, gr-qc/9709028.
[47] C. Rovelli. Loop Quantum Gravity and Black Hole Physics , 1996, gr-qc/9608032.
[48] A. Ashtekar,et al. Quantum theory of geometry: I. Area operators , 1996, gr-qc/9602046.
[49] H. Hamber,et al. On the quantum corrections to the newtonian potential , 1995, hep-th/9505182.
[50] C. Rovelli,et al. Discreteness of area and volume in quantum gravity [Nucl. Phys. B 442 (1995) 593] , 1994, gr-qc/9411005.
[51] Donoghue,et al. Leading quantum correction to the Newtonian potential. , 1993, Physical review letters.
[52] Rovelli,et al. Knot theory and quantum gravity. , 1988, Physical review letters.
[53] Carlo Rovelli,et al. Loop space representation of quantum general relativity , 1988 .
[54] J. Baez,et al. An Introduction to Spin Foam Models of BF Theory and Quantum Gravity , 1999 .
[55] Jerzy Lewandowski,et al. Quantum theory of geometry: I. Area operators , 1997 .