Transactions and Zero-Safe Nets

When employing Petri nets to model distributed systems, one must be aware that the basic activities of each component can vary in duration and can involve smaller internal activities, i.e., that transitions are conceptually refined into transactions. We present an approach to the modeling of transactions based on zero-safe nets. They extend ordinary pt nets with a simple mechanism for transition synchronization. We show that the net theory developed under the two most widely adopted semantic interpretations (collective token and individual token philosophies) can be uniformly adapted to zero-safe nets. In particular, we show that each zero-safe net has two associated pt nets that represent the abstract counterparts of the modeled system according to these two philosophies. We show several applications of the framework, a distributed interpreter for zs nets based on classical net unfolding (here extended with a commit rule) and discuss some extensions to other net flavours to show that the concept of zero place provides a unifying notion of transaction for several different kinds of Petri nets.

[1]  Roberto Bruni,et al.  A Comparison of Petri Net Semantics under the Collective Token Philosophy , 1998 .

[2]  Wolfgang Reisig,et al.  The Non-sequential Behavior of Petri Nets , 1983, Inf. Control..

[3]  Julia Padberg,et al.  Abstract Petri nets - uniform approach and rule-based refinement , 1996, Berichte aus der Informatik.

[4]  Roberto Bruni,et al.  Zero-safe nets: The individual token approach , 1997, WADT.

[5]  Vladimiro Sassone,et al.  Algebrai Models for Contextual , 2000 .

[6]  Paolo Baldan,et al.  Modelling Concurrent Computations: from Contextual Petri Nets to Graph Grammars , 2000 .

[7]  Gordon D. Plotkin,et al.  Configuration structures , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[8]  Robert Valette,et al.  Analysis of Petri Nets by Stepwise Refinements , 1979, J. Comput. Syst. Sci..

[9]  Glynn Winskel,et al.  Event Structures , 1986, Advances in Petri Nets.

[10]  Raymond R. Devillers,et al.  Sequential and Concurrent Behaviour in Petri Net Theory , 1987, Theor. Comput. Sci..

[11]  Peter Csaba Ölveczky,et al.  Rewriting Logic as a Unifying Framework for Petri Nets , 2001, Unifying Petri Nets.

[12]  Roberto Bruni,et al.  A Comparison of Petri Net Semantics under the Collective Token Philosophy , 1998, ASIAN.

[13]  Roberto Bruni,et al.  Zero-Safe Nets: Composing Nets via Transition Synchronization , 1999 .

[14]  José Meseguer,et al.  Representation Theorems for Petri Nets , 1997, Foundations of Computer Science: Potential - Theory - Cognition.

[15]  Tilak Agerwala,et al.  Comments on capabilities, limitations and “correctness” of Petri nets , 1973, ISCA 1973.

[16]  Rob J. van Glabbeek Petri Nets, Configuration Structures and Higher Dimensional Automata , 1999, CONCUR.

[17]  S. Maclane,et al.  Categories for the Working Mathematician , 1971 .

[18]  Roberto Bruni,et al.  Zero-Safe Nets: Comparing the Collective and Individual Token Approaches , 2000, Inf. Comput..

[19]  Glynn Winskel,et al.  Petri Nets, Event Structures and Domains, Part I , 1981, Theor. Comput. Sci..

[20]  Vladimiro Sassone,et al.  An Axiomatization of the Algebra of Petri Net Concatenable Processes , 1996, Theor. Comput. Sci..

[21]  Ichiro Suzuki,et al.  A Method for Stepwise Refinement and Abstraction of Petri Nets , 1983, J. Comput. Syst. Sci..

[22]  Ugo Montanari,et al.  An Event Structure Semantics for P/T Contextual Nets: Asymmetric Event Structures , 1998, FoSSaCS.

[23]  Raymond R. Devillers,et al.  General Refinement and Recursion Operators for the Petri Box Calculus , 1993, STACS.

[24]  R. Bruni Tile Logic for Synchronized Rewriting of Concurrent Systems , 1999 .

[25]  Raymond R. Devillers,et al.  The box calculus: a new causal algebra with multi-label communication , 1992, Advances in Petri Nets: The DEMON Project.

[26]  Vladimiro Sassone,et al.  An axiomatization of the category of Petri net computations , 1998, Mathematical Structures in Computer Science.

[27]  Rob J. van Glabbeek,et al.  Petri Net Models for Algebraic Theories of Concurrency , 1987, PARLE.

[28]  Wolfgang Reisig Petri Nets: An Introduction , 1985, EATCS Monographs on Theoretical Computer Science.

[29]  Roberto Gorrieri,et al.  On the Implementation of Concurrent Calculi in Net Calculi: Two Case Studies , 1995, Theor. Comput. Sci..

[30]  Julia Padberg,et al.  Classification of Petri Nets Using Adjoint Functors , 2001, Bull. EATCS.

[31]  Wilfried Brauer,et al.  A survey of behaviour and equivalence preserving refinements of Petri nets , 1991, Applications and Theory of Petri Nets.

[32]  José Meseguer,et al.  Process versus Unfolding Semantics for Place/Transition Petri Nets , 1996, Theor. Comput. Sci..

[33]  José Meseguer,et al.  Petri Nets Are Monoids , 1990, Inf. Comput..

[34]  Roberto Bruni,et al.  Executing Transactions in Zero-Safe Nets , 2000, ICATPN.

[35]  Ernst-Rüdiger Olderog,et al.  Operational Petri net semantics for CCSP , 1986, European Workshop on Applications and Theory of Petri Nets.

[36]  Ursula Goltz,et al.  Refinement of actions and equivalence notions for concurrent systems , 2001, Acta Informatica.

[37]  Ugo Montanari,et al.  Modelling Concurrent Accesses to Shared Data via Petri Nets , 1994, PROCOMET.

[38]  Glynn Winskel,et al.  Event Structure Semantics for CCS and Related Languages , 1982, ICALP.

[39]  S. Lane Categories for the Working Mathematician , 1971 .

[40]  Glynn Winskel,et al.  Petri Nets, Algebras, Morphisms, and Compositionality , 1987, Inf. Comput..

[41]  Roberto Bruni,et al.  Zero-safe nets, or transition synchronization made simple , 1997, EXPRESS.

[42]  Walter Vogler,et al.  Behaviour Preserving Refinement of Petri Nets , 1986, WG.

[43]  Roberto Bruni,et al.  Functorial semantics for Petri nets under the individual token philosophy , 1999, CTCS.

[44]  Vladimiro Sassone An axiomatization of the algebra of Petri net concatenable processes , 1996 .

[45]  José Meseguer,et al.  Axiomatizing the algebra of net computations and processes , 1996, Acta Informatica.

[46]  Hartmut Ehrig,et al.  A Uniform Approach to Petri Nets , 1997, Foundations of Computer Science: Potential - Theory - Cognition.

[47]  T. Agerwala,et al.  Complete model for representing the coordination of asynchronous processes , 1974 .

[48]  Carolyn Brown,et al.  A categorical linear framework for Petri nets , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.

[49]  C. Petri Kommunikation mit Automaten , 1962 .

[50]  Roberto Bruni,et al.  Two Algebraic Process Semantics for Contextual Nets , 2001, Unifying Petri Nets.