A Hybrid GP Approach for Numerically Robust Symbolic Regression
暂无分享,去创建一个
[1] D. Rasch,et al. E. L. Crow, F. A. Davis und W. Maxfield: “Statistics Manual with examples taken from ordonance development”. Dover Publications, Inc. New York-New York 1960. XVII + 288 S. (einschließlich Tabellen und Abbildungen), Preis $ 1,65 , 1965 .
[2] Gene H. Golub,et al. Matrix computations , 1983 .
[3] Lawrence S. Kroll. Mathematica--A System for Doing Mathematics by Computer. , 1989 .
[4] J. D. Schaffer,et al. Combinations of genetic algorithms and neural networks: a survey of the state of the art , 1992, [Proceedings] COGANN-92: International Workshop on Combinations of Genetic Algorithms and Neural Networks.
[5] John R. Koza,et al. Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.
[6] Una-May O'Reilly,et al. Genetic Programming II: Automatic Discovery of Reusable Programs. , 1994, Artificial Life.
[7] Mark J. Willis,et al. Using a tree structured genetic algorithm to perform symbolic regression , 1995 .
[8] David Rogers,et al. Development of a genetic algorithm based biomechanical simulation of sagittal lifting tasks , 2005 .
[9] M. A. Ahmed,et al. Function approximator design using genetic algorithms , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).
[10] Günther R. Raidl,et al. Evolutionary Optimized Tensor Product Bernstein Polynomials versus Backpropagation Networks , 1998, NC.
[11] G. Raidl,et al. Approximation with Evolutionary Optimized Tensor Product Bernstein Polynomials , 1998 .