Non-oscillatory central schemes for one- and two-dimensional MHD equations. II: high-order semi-discrete schemes.

Abstract : We present a new family of high-resolution, non-oscillatory semi-discrete central schemes for the approximate solution of the ideal Magnetohydrodynamics (MHD) equations. This is the second part of our work, where we are passing from the fully-discrete, staggered schemes to a semi-discrete formulation. This semi-discrete formulation retains the simplicity of fully-discrete central schemes while enhancing efficiency and adding versatility. The semi-discrete algorithm offers a wider range of options to implement its two key steps: non-oscillatory reconstruction and evolution. Along with the description of the numerical methods employed, we present several prototype MHD problems.

[1]  Gabriella Puppo,et al.  A third order central WENO scheme for 2D conservation laws , 2000 .

[2]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[3]  N. Bucciantini,et al.  An efficient shock-capturing central-type scheme for multidimensional relativistic flows , 2002 .

[4]  E. Tadmor,et al.  New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection—Diffusion Equations , 2000 .

[5]  J. Michael Picone,et al.  Evolution of the Orszag-Tang vortex system in a compressible medium , 1991 .

[6]  Stanley Osher,et al.  Nonoscillatory high order accurate self-similar maximum principle satisfying shock capturing schemes I , 1996 .

[7]  S. Osher,et al.  High-Resolution Nonoscillatory Central Schemes with Nonstaggered Grids for Hyperbolic Conservation Laws , 1998 .

[8]  D. Bidwell,et al.  Formation , 2006, Revue Francophone d'Orthoptie.

[9]  Alexander Kurganov,et al.  Semidiscrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton-Jacobi Equations , 2001, SIAM J. Sci. Comput..

[10]  P. Londrillo,et al.  An efficient shock-capturing central-type scheme for multidimensional relativistic flows. II. Magnetohydrodynamics , 2002 .

[11]  S. Osher,et al.  Some results on uniformly high-order accurate essentially nonoscillatory schemes , 1986 .

[12]  Z. Xin,et al.  Numerical Passage from Systems of Conservation Laws to Hamilton--Jacobi Equations, and Relaxation Schemes , 1998 .

[13]  Cornelis Vuik,et al.  A conservative pressure‐correction method for the Euler and ideal MHD equations at all speeds , 2002 .

[14]  S. Osher,et al.  Uniformly high order accuracy essentially non-oscillatory schemes III , 1987 .

[15]  Kun Xu,et al.  A high-order gas-kinetic method for multidimensional ideal magnetohydrodynamics , 2000 .

[16]  J. M. Picone,et al.  Evolution of the Orszag-Tang vortex system in a compressible medium. I: Initial average subsonic flow , 1989 .

[17]  E. Tadmor,et al.  Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .

[18]  Philip L. Roe,et al.  An upwind scheme for magnetohydrodynamics , 1995 .

[19]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[20]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[21]  Doron Levy,et al.  A Third-Order Semidiscrete Central Scheme for Conservation Laws and Convection-Diffusion Equations , 2000, SIAM J. Sci. Comput..

[22]  Eitan Tadmor,et al.  Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws , 1998, SIAM J. Sci. Comput..

[23]  Chi-Wang Shu Total-variation-diminishing time discretizations , 1988 .

[24]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[25]  Alexander Kurganov,et al.  A third-order semi-discrete genuinely multidimensional central scheme for hyperbolic conservation laws and related problems , 2001, Numerische Mathematik.

[26]  Gabriella Puppo,et al.  High-Order Central Schemes for Hyperbolic Systems of Conservation Laws , 1999, SIAM J. Sci. Comput..

[27]  T. Changb,et al.  Further study of the dynamics of two-dimensional MHD coherent structures — a large-scale simulation , 2001 .

[28]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[29]  Gabriella Puppo,et al.  A Fourth-Order Central WENO Scheme for Multidimensional Hyperbolic Systems of Conservation Laws , 2002, SIAM J. Sci. Comput..

[30]  B. Engquist,et al.  Multi-phase computations in geometrical optics , 1996 .

[31]  Guang-Shan Jiang,et al.  A High-Order WENO Finite Difference Scheme for the Equations of Ideal Magnetohydrodynamics , 1999 .

[32]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[33]  M. Brio,et al.  An upwind differencing scheme for the equations of ideal magnetohydrodynamics , 1988 .

[34]  G. Russo,et al.  Central WENO schemes for hyperbolic systems of conservation laws , 1999 .

[35]  Paul R. Woodward,et al.  A Simple Finite Difference Scheme for Multidimensional Magnetohydrodynamical Equations , 1998 .

[36]  P. Lax Weak solutions of nonlinear hyperbolic equations and their numerical computation , 1954 .

[37]  E. Tadmor,et al.  Third order nonoscillatory central scheme for hyperbolic conservation laws , 1998 .

[38]  N. Bucciantini,et al.  A third order shock-capturing code for relativistic 3-D MHD , 2003 .

[39]  J. Brackbill,et al.  The Effect of Nonzero ∇ · B on the numerical solution of the magnetohydrodynamic equations☆ , 1980 .

[40]  S. Orszag,et al.  Small-scale structure of two-dimensional magnetohydrodynamic turbulence , 1979, Journal of Fluid Mechanics.

[41]  C. Wu,et al.  Formation, structure, and stability of MHD intermediate shocks , 1990 .