Baseline Design of a 16 T $\cos \theta$ Bending Dipole for the Future Circular Collider
暂无分享,去创建一个
S. Farinon | M. Sorbi | P. Fabbricatore | G. Bellomo | B. Caiffi | S. Mariotto | A. Pampaloni | A. Ricci | M. Statera | R. Valente
[1] S. Russenschuck,et al. The 16 T Dipole Development Program for FCC and HE-LHC , 2019, IEEE Transactions on Applied Superconductivity.
[2] A. Verweij,et al. Quench Protection of the 16 T Nb3Sn Dipole Magnets Designed for the Future Circular Collider , 2019, IEEE Transactions on Applied Superconductivity.
[3] S. Farinon,et al. Mechanical stress analysis during a quench in CLIQ protected 16 T dipole magnets designed for the future circular collider , 2018, Physica C: Superconductivity and its Applications.
[4] S. Farinon,et al. Conceptual Design of a 16 T cos θ Bending Dipole for the Future Circular Collider , 2018, IEEE Transactions on Applied Superconductivity.
[5] S. Russenschuck,et al. Status of the 16 T Dipole Development Program for a Future Hadron Collider , 2018, IEEE Transactions on Applied Superconductivity.
[6] S. Farinon,et al. Update on Mechanical Design of a Cosθ 16-T Bending Dipole for the Future Circular Collider , 2018, IEEE Transactions on Applied Superconductivity.
[7] S. Russenschuck,et al. The 16 T Dipole Development Program for FCC , 2017, IEEE Transactions on Applied Superconductivity.
[8] M. Durante,et al. Considerations on a Cost Model for High-Field Dipole Arc Magnets for FCC , 2017, IEEE Transactions on Applied Superconductivity.
[9] S. Farinon,et al. Quench Protection Study of the Eurocircol 16 T cosθ Dipole for the Future Circular Collider (FCC) , 2017, IEEE Transactions on Applied Superconductivity.
[10] E. Todesco. Quench limits in the next generation of magnets , 2014 .
[11] Shlomo Caspi,et al. The use of pressurized bladders for stress control of superconducting magnets , 2001 .