Comparison of energy harvesting systems for wireless sensor networks

Wireless sensor networks (WSNs) offer an attractive solution to many environmental, security, and process monitoring problems. However, one barrier to their fuller adoption is the need to supply electrical power over extended periods of time without the need for dedicated wiring. Energy harvesting provides a potential solution to this problem in many applications. This paper reviews the characteristics and energy requirements of typical sensor network nodes, assesses a range of potential ambient energy sources, and outlines the characteristics of a wide range of energy conversion devices. It then proposes a method to compare these diverse sources and conversion mechanisms in terms of their normalised power density.

[1]  Krishna M. Sivalingam,et al.  Proceedings of the 1st ACM international workshop on Wireless sensor networks and applications , 2002 .

[2]  D. Inman,et al.  A Review of Power Harvesting from Vibration using Piezoelectric Materials , 2004 .

[3]  C. C. Federspiel,et al.  Air-powered sensor , 2003, Proceedings of IEEE Sensors 2003 (IEEE Cat. No.03CH37498).

[4]  Hwan-Sik Yoon,et al.  Optimization of Electrical Output in Response to Mechanical Input in Piezoceramic Laminated Shells , 2003 .

[5]  M. Green Third generation photovoltaics : advanced solar energy conversion , 2006 .

[6]  Ron Pelrine,et al.  Dielectric elastomers: generator mode fundamentals and applications , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[7]  Jeffrey Yukio Hayashida Unobtrusive Integration of Magnetic Generator Systems into Common Footwear , 2000 .

[8]  John Anderson,et al.  Wireless sensor networks for habitat monitoring , 2002, WSNA '02.

[9]  Gyula Simon,et al.  Sensor network-based countersniper system , 2004, SenSys '04.

[10]  C. Pereira,et al.  Piezoelectric-based power sources for harvesting energy from platforms with low-frequency vibration , 2006, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[11]  Anantha Chandrakasan,et al.  Vibration-to-electric energy conversion , 1999, Proceedings. 1999 International Symposium on Low Power Electronics and Design (Cat. No.99TH8477).

[12]  William G. Scanlon,et al.  Analysis of the performance of IEEE 802.15.4 for medical sensor body area networking , 2004, 2004 First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON 2004..

[13]  Neil M. White,et al.  An electromagnetic, vibration-powered generator for intelligent sensor systems , 2004 .

[14]  Peter I. Corke,et al.  Virtual fences for controlling cows , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[15]  M. Stordeur,et al.  Low power thermoelectric generator-self-sufficient energy supply for micro systems , 1997, XVI ICT '97. Proceedings ICT'97. 16th International Conference on Thermoelectrics (Cat. No.97TH8291).

[16]  Luigi Fortuna,et al.  A nonlinear model for ionic polymer metal composites as actuators , 2007 .

[17]  Russ E. Davis,et al.  AUTONOMOUS PROFILING FLOATS: WORKHORSE FOR BROAD-SCALE OCEAN OBSERVATIONS , 2004 .

[18]  R. B. Yates,et al.  Development of an electromagnetic micro-generator , 2001 .

[19]  Hwan-Sik Yoon,et al.  Modeling, Optimization, and Design of Efficient Initially Curved Piezoceramic Unimorphs for Energy Harvesting Applications , 2005 .

[20]  Jan M. Rabaey,et al.  Power Sources for Wireless Sensor Networks , 2004, EWSN.

[21]  Wei-Hsin Liao,et al.  Sensitivity Analysis and Energy Harvesting for a Self-Powered Piezoelectric Sensor , 2005 .

[22]  Thomas von Büren,et al.  Body-worn inertial electromagnetic micro-generators , 2006 .

[23]  Shuang-Hua Yang,et al.  SafetyNET/A Wireless Sensor Network for Fire Protection and Emergency Responses , 2006 .

[24]  Robert J. Wood,et al.  Towards a 3g crawling robot through the integration of microrobot technologies , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[25]  N. Kabei,et al.  Development of an electrostatic generator for a cardiac pacemaker that harnesses the ventricular wall motion , 2002, Journal of Artificial Organs.

[26]  Dan C. Marinescu,et al.  Self-organizing sensor networks , 2008, 2008 3rd International Symposium on Wireless Pervasive Computing.

[27]  G E Bertocci,et al.  A gait-powered autologous battery charging system for artificial organs. , 1995, ASAIO journal.

[28]  Jan M. Rabaey,et al.  A study of low level vibrations as a power source for wireless sensor nodes , 2003, Comput. Commun..

[29]  T. S. Birch,et al.  Development of an electromagnetic micro-generator , 1997 .

[30]  S. Roundy Energy Scavenging for Wireless Sensor Nodes with a Focus on Vibration-to-Electricity Conversion , 2003 .

[31]  S. Shahruz Design of mechanical band-pass filters for energy scavenging , 2006 .

[32]  James M. Gilbert,et al.  Control of a novel switched mode variable ratio drive , 1996 .

[33]  Joseph A. Paradiso,et al.  Energy Scavenging with Shoe-Mounted Piezoelectrics , 2001, IEEE Micro.

[34]  Albrecht Schmidt,et al.  Applying wearable sensors to avalanche rescue , 2003, Comput. Graph..

[35]  Karla Mossi,et al.  Harvesting Energy Using a Thin Unimorph Prestressed Bender: Geometrical Effects , 2005 .

[36]  Sinem Coleri Ergen,et al.  ZigBee/IEEE 802.15.4 Summary , 2004 .

[37]  Michael J. Anderson,et al.  Efficiency of energy conversion for devices containing a piezoelectric component , 2004 .

[38]  R. Beckwith,et al.  Unwired wine: sensor networks in vineyards , 2004, Proceedings of IEEE Sensors, 2004..

[39]  F. Discenzo,et al.  Power Scavenging Enables Maintenance-Free Wireless Sensor Nodes , 2006 .

[40]  Yang Zhang,et al.  Toward self-tuning adaptive vibration-based microgenerators , 2005, SPIE Micro + Nano Materials, Devices, and Applications.

[41]  Saibal Roy,et al.  A micro electromagnetic generator for vibration energy harvesting , 2007 .

[42]  Phillip J. Cornwell,et al.  Enhancing Power Harvesting using a Tuned Auxiliary Structure , 2005 .

[43]  Loreto Mateu,et al.  Review of energy harvesting techniques and applications for microelectronics (Keynote Address) , 2005, SPIE Microtechnologies.

[44]  Joseph A. Paradiso,et al.  Parasitic power harvesting in shoes , 1998, Digest of Papers. Second International Symposium on Wearable Computers (Cat. No.98EX215).

[45]  M. Wu,et al.  Principles of environmental physics , 2004, Plant Growth Regulation.

[46]  Thad Starner Powerful Change Part 1: Batteries and Possible Alternatives for the Mobile Market , 2003, IEEE Pervasive Comput..

[47]  Libor Rufer,et al.  Dynamic simulation of an implemented electrostatic power micro-generator , 2005 .

[48]  Cornelia Kappler,et al.  A Real-World, Simple Wireless Sensor Network for Monitoring Electrical Energy Consumption , 2004, EWSN.

[49]  Paul K. Wright,et al.  A piezoelectric vibration based generator for wireless electronics , 2004 .

[50]  Ivan Stojmenovic,et al.  Handbook of Sensor Networks: Algorithms and Architectures , 2005, Handbook of Sensor Networks.

[51]  Yong Wang,et al.  Energy-efficient computing for wildlife tracking: design tradeoffs and early experiences with ZebraNet , 2002, ASPLOS X.

[52]  Thad Starner,et al.  Human-Powered Wearable Computing , 1996, IBM Syst. J..

[53]  Neil M. White,et al.  Towards a piezoelectric vibration-powered microgenerator , 2001 .

[54]  Stefano Chessa,et al.  Wireless sensor networks: A survey on the state of the art and the 802.15.4 and ZigBee standards , 2007, Comput. Commun..

[55]  K. Najafi,et al.  An electromagnetic micro power generator for low-frequency environmental vibrations , 2004, 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest.

[56]  P. Miao,et al.  Analysis and Optimisation of MEMS Electrostatic On-Chip Power Supply for Self-Powering of Slow-Moving Sensors , 2003 .

[57]  S. M. Shahruz,et al.  Limits of performance of mechanical band-pass filters used in energy scavenging , 2006 .

[58]  José Luis González,et al.  Human Powered Piezoelectric Batteries to Supply Power to Wearable Electronic Devices , 2002 .

[59]  Wen-Jong Wu,et al.  Tunable resonant frequency power harvesting devices , 2006, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[60]  Gregory J. Pottie,et al.  Collaborative networking requirements for unattended ground sensor systems , 2003, 2003 IEEE Aerospace Conference Proceedings (Cat. No.03TH8652).

[61]  S. Beeby,et al.  Energy harvesting vibration sources for microsystems applications , 2006 .

[62]  Neil M. White,et al.  Design and fabrication of a new vibration-based electromechanical power generator , 2001 .

[63]  Ghislain Despesse,et al.  Fabrication and characterization of high damping electrostatic micro devices for vibration energy scavenging , 2005 .

[64]  Joseph A. Paradiso,et al.  Human Generated Power for Mobile Electronics , 2004 .

[65]  S. Basrour,et al.  High damping electrostatic system for vibration energy scavenging , 2005, sOc-EUSAI '05.

[66]  Jan M. Rabaey,et al.  Improving power output for vibration-based energy scavengers , 2005, IEEE Pervasive Computing.

[67]  Henry A. Sodano,et al.  A review of power harvesting using piezoelectric materials (2003–2006) , 2007 .

[68]  Skandar Basrour,et al.  Design and fabrication of piezoelectric micro power generators for autonomous microsystems , 2005 .

[69]  Paul D. Mitcheson,et al.  Transduction Mechanisms and Power Density for MEMS Inertial Energy Scavengers , 2006 .

[70]  恩斯特·布特勒 Hydraulic power generating device , 2003 .

[71]  Neal Patwari,et al.  Wireless Sensor Networks: Challenges and Opportunities , 2001 .

[72]  Kay Römer,et al.  The design space of wireless sensor networks , 2004, IEEE Wireless Communications.

[73]  K. Pullen,et al.  Axial-flow microturbine with electromagnetic generator: design, CFD simulation, and prototype demonstration , 2004, 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest.

[74]  Branko G. Celler,et al.  An instrumentation system for the remote monitoring of changes in functional health status of the elderly at home , 1994, Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[75]  Luca Benini,et al.  Wireless sensor networks: Enabling technology for ambient intelligence , 2006, Microelectron. J..

[76]  Ravi Jain,et al.  Challenges: environmental design for pervasive computing systems , 2002, MobiCom '02.

[77]  Np Palastanga Ma Ba Mcsp Dms Dip Tp Human Movement An introductory text , 1997 .

[78]  N. G. Stephen,et al.  On energy harvesting from ambient vibration , 2006 .

[79]  Ian F. Akyildiz,et al.  Wireless sensor networks , 2007 .