Both regulatory and consumer forces have increased the demand for biopesticides, particularly in amenity areas such as turfgrass. Unfortunately, few natural products are available for selective weed control in turfgrass. Two bioherbicides reported to control broadleaf weeds without injuring turfgrass are Phoma macrostoma and thaxtomin A. Field and container experiments were conducted to evaluate PRE and POST efficacy of P. macrostoma and thaxtomin A on regionally important broadleaf weeds. In container experiments, PRE applications of P. macrostoma provided 65 to 100% control of dandelion, marsh yellowcress, and flexuous bittercress, equivalent to that of pendimethalin. Control of yellow woodsorrel, henbit, hairy galinsoga, common chickweed, or annual bluegrass was less than with pendimethalin. In contrast, POST applications did not control any species as well as an industry-standard synthetic auxin herbicide. PRE or POST applications of thaxtomin A controlled six of the eight species tested as well as the industry-standard PRE or POST herbicides. In field tests, overall PRE broadleaf weed control with P. macrostoma and thaxtomin A peaked 4 wk after treatment at 64 and 72%, respectively, and declined afterward, suggesting that these bioherbicides possess short residuals and therefore must be reapplied for season-long control. Overall POST broadleaf weed control using P. macrostoma and thaxtomin A was only 41 and 25%, respectively. PRE followed by early-POST applications of thaxtomin A provided ≥ 86% henbit control. These results suggest that both P. macrostoma and thaxtomin A are capable of controlling certain broadleaf weeds in turfgrass. However, both lack efficacy on some important weed species, particularly chickweed. Thaxtomin A efficacy on henbit was improved by increased dose and by PRE followed by early-POST applications. Nomenclature: Phoma macrostoma; thaxtomin A; hairy galinsoga (Galinsoga quadriradiata); dandelion, Taraxacum officinale G.H. Weber ex Wiggers, TAROF; yellow woodsorrel, Oxalis stricta L., OXAST; marsh yellowcress, Rorippa palustris (L.) Bess., RORIS; ivyleaf speedwell, Veronica hederifolia L., VERHE; annual bluegrass (Poa annua); flexuous bittercress, Cardamine flexuosa With., CARFL; henbit, Lamium amplexicaule L., LAMAM; common chickweed, Stellaria media (L.) Vill., STEME; large hop clover, Trifolium campestre Schreb., TRFCA; sparrow vetch, Vicia tetrasperma (L.) Schreb., VICTE; field madder, Sherardia arvensis L., SHRAR; tall fescue, Lolium arundinaceum (Schreb.) S.J. Darbyshire, ‘The Rebels', ‘Top Choice'. Tanto fuerzas regulatorias como los consumidores han incrementado la demanda por biopesticidas, particularmente en áreas amenas tales como áreas con césped. Desafortunadamente, hay pocos productos naturales disponibles para el control selectivo de malezas en céspedes. Dos bioherbicidas reportados para el control de malezas de hoja ancha sin causar daño al césped son Phoma macrostoma y thaxtomin A. Experimentos de campo y en contenedores fueron realizados para evaluar la eficacia de P. macrostoma y thaxtomin A PRE y POST en malezas de hoja ancha importantes en la región. En experimentos con contenedores, las aplicaciones PRE de P. macrostoma brindó 65 a 100% de control de Taraxacum officinale, Rorippa palustris, y Cardamine flexuosa, el cual fue equivalente al control con pendimethalin. El control de Oxalis stricta, Lamium amplexicaule, Galinsoga quadriradiata, Stellaria media, o Poa annua fue menor que con pendimethalin. En contraste, las aplicaciones POST no controlaron ninguna de las especies tan bien como un herbicida sintético auxinic estándar en la industria. Las aplicaciones PRE o POST de thaxtomin A controlaron seis de las ocho especies evaluadas tan bien como los herbicidas PRE y POST estándar en la industria. En los ensayos de campo, en general el control PRE de malezas de hoja ancha con P. macrostoma y thaxtomin A alcanzó el máximo nivel 4 semanas después del tratamiento con 64 y 72%, respectivamente, y declinó después de este momento, sugiriendo que estos bioherbicidas poseen un corto efecto residual, por lo que deben ser reaplicados para obtener control a lo largo de toda la temporada. En general, el control POST de malezas de hoja ancha usando P. macrostoma y thaxtomin A fue solamente 41 y 25%, respectivamente. Aplicaciones PRE seguidas por POST-tempranas de thaxtomin A brindaron ≥86% de control de L. amplexicaule. Estos resultados sugieren que P. macrostoma y thaxtomin A son capaces de controlar algunas malezas de hoja ancha en céspedes. Sin embargo, ambos carecen de eficacia en el control de algunas especies de malezas importantes, particularmente S. media. La eficacia de thaxtomin A en L. amplexicaule fue mejorada al aumentar la dosis y al hacer aplicaciones PRE seguidas de aplicaciones POST-tempranas.
[1]
M. Raizada,et al.
Controlling weeds with fungi, bacteria and viruses: a review
,
2015,
Front. Plant Sci..
[2]
Z. Easton,et al.
Solute Transport through a Pine Bark-based Substrate under Saturated and Unsaturated Conditions
,
2014
.
[3]
J. Fenoll,et al.
Assessment of agro-industrial and composted organic wastes for reducing the potential leaching of triazine herbicide residues through the soil.
,
2014,
The Science of the total environment.
[4]
C. Siva.
Alternative Strategies for Broadleaf Weed Management in Residential Lawns
,
2014
.
[5]
K. Bailey,et al.
Tracing the origins of White Tip disease of Cirsium arvense and its causal agent, Phoma macrostoma
,
2013
.
[6]
R. S. John,et al.
Efficacy of Corn Gluten Meal for Common Dandelion and Smooth Crabgrass Control Compared to Nitrogen Fertilizers
,
2013,
ATS 2013.
[7]
Charles H. Gilliam,et al.
Duration of Flumioxazin-Based Weed Control in Container-Grown Nursery Crops
,
2012,
Weed Technology.
[8]
T. Grey,et al.
Sulfonylurea Herbicides' Fate in Soil: Dissipation, Mobility, and Other Processes
,
2012,
Weed Technology.
[9]
N. Cedergreen,et al.
Influence of pH, light cycle, and temperature on ecotoxicity of four sulfonylurea herbicides towards Lemna gibba
,
2012,
Ecotoxicology.
[10]
Jennifer Grant,et al.
The Child Safe Playing Fields Act: NY's ban on pesticide use on school and day care center grounds
,
2012
.
[11]
Michael T. Hernke,et al.
Sustainability, Health and Precautionary Perspectives on Lawn Pesticides, and Alternatives
,
2011,
EcoHealth.
[12]
K. Bailey,et al.
The effects of Phoma macrostoma on nontarget plant and target weed species
,
2011
.
[13]
W. Grant,et al.
The development, regulation and use of biopesticides for integrated pest management
,
2011,
Philosophical Transactions of the Royal Society B: Biological Sciences.
[14]
M. D. Jong,et al.
Evaluating the Environmental Safety of Broad-host-range Bioherbicides
,
2011
.
[15]
S. Boyetchko,et al.
Social and economic drivers shaping the future of biological control: A Canadian perspective on the factors affecting the development and use of microbial biopesticides
,
2010
.
[16]
L. Simard,et al.
Current and potential use of pathogens in the management of turfgrass insects as affected by new pesticide regulations in North America
,
2010
.
[17]
Mohammed H. Abu-Dieyeh,et al.
Population Dynamics of Broadleaf Weeds in Turfgrass as Influenced By Chemical and Biological Control Methods
,
2007,
Weed Science.
[18]
S. Keeley,et al.
Preemergence Herbicide and Seeding Method Effects on Seedling Growth of Kentucky Bluegrass1
,
2005,
Weed Technology.
[19]
J. Garbutt,et al.
Herbicidal activity of hydrolyzed corn gluten meal on three grass species under controlled environments
,
1994,
Journal of Plant Growth Regulation.
[20]
G. Boland,et al.
2,4-D and Sclerotinia minor to control common dandelion
,
2002,
Weed Science.
[21]
R. Loria,et al.
Thaxtomin A: evidence for a plant cell wall target☆
,
2002
.
[22]
J. Gray,et al.
Herbicidal properties of the thaxtomin group of phytotoxins.
,
2001,
Journal of agricultural and food chemistry.
[23]
M. C. McDade,et al.
Corn gluten meal—a natural preemergence herbicide: Effect on vegetable seedling survival and weed cover
,
2000
.
[24]
P. Grewal.
Factors in the Success and Failure of Microbial Control in Turfgrass
,
1999
.
[25]
Webb.
Fundamentals of Weed Science
,
1999
.
[26]
P. Porpiglia,et al.
Overview of the Turf Weed Control Market in the USA
,
1996
.
[27]
L. Calhoun,et al.
Chemistry of phytotoxins associated with Streptomyces scabies the causal organism of potato common scab
,
1992
.
[28]
G. Boland,et al.
Virulence of Sclerotinia sclerotiorum and S. minor on Dandelion (Taraxacum officinale)
,
1991,
Weed Science.