Triple Higgs boson production to six b-jets at a 100 TeV proton collider

We investigate the production of three Higgs bosons at a proton-proton collider running at a centre-of-mass energy of 100 TeV, all of which decay into b-jets. This final state encapsulates by far the largest fraction of the total cross section of triple Higgs boson production, approximately $$20\%$$20%. We examine, by constructing detailed phenomenological analyses, two scenarios: (i) one in which the triple and quartic Higgs boson self-couplings are modified independently by new phenomena with respect to their Standard Model (SM) values and (ii) an extension of the SM by a gauge-singlet scalar that could drive first-order electroweak phase transition, within the context of the so-called xSM. In the former, we find that competitive constraints of $${\mathscr {O}}(1)$$O(1) can be placed on the quartic coupling and in the latter we demonstrate that it will be possible to obtain important information on the structure of the extended scalar sector.

[1]  Scoap Search for Higgs boson pair production in the bb¯bb¯ final state from pp collisions at s=8 TeVwith the ATLAS detector , 2015 .

[2]  L. Suter,et al.  Herwig++ 2.5 Release Note , 2002, 1102.1672.

[3]  J. T. Childers,et al.  FCC-ee: The Lepton Collider , 2019, The European Physical Journal Special Topics.

[4]  Olivier Mattelaer,et al.  Automated event generation for loop-induced processes , 2015, 1507.00020.

[5]  Nicola De Filippis,et al.  Higgs boson pair production at colliders: status and perspectives , 2019 .

[6]  S. Frixione,et al.  Matching NLO QCD computations and parton shower simulations , 2002, hep-ph/0204244.

[7]  J. Espinosa,et al.  Novel Effects in Electroweak Breaking from a Hidden Sector , 2007, hep-ph/0701145.

[8]  Johannes Bellm,et al.  Herwig 7.0/Herwig++ 3.0 release note , 2015, 1512.01178.

[9]  Nicola De Filippis,et al.  FCC Physics Opportunities , 2019, The European Physical Journal C.

[10]  A. Papaefstathiou,et al.  VHH production at the high-luminosity LHC , 2018, The European Physical Journal Plus.

[11]  M. Selvaggi,et al.  \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$hh+\text {Jet}$$\end{document}hh+Jet production at 100 TeV , 2018, The European physical journal. C, Particles and fields.

[12]  R. S. Thorne,et al.  Parton distributions for the LHC , 2007, 0901.0002.

[13]  J. Frost,et al.  Boosting Higgs pair production in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\bar{b}b\bar{b}$$\end{document} , 2015, The European Physical Journal C.

[14]  W. Yao,et al.  Probing new physics of cubic Higgs boson interaction via Higgs pair production at hadron colliders , 2015, 1506.03302.

[15]  Q. Cao,et al.  Double Higgs production at the 14 TeV LHC and a 100 TeV $pp$ collider , 2016, 1611.09336.

[16]  W. Repko,et al.  Self-coupling of the Higgs boson in the processes p p →Z H H H +X and p p →W H H H +X , 2016, 1602.05849.

[17]  Jeong Han Kim,et al.  Probing Higgs boson self-interactions in proton-proton collisions at a center-of-mass energy of 100 TeV , 2015, 1510.07697.

[18]  Christophe Grojean,et al.  On the validity of the effective field theory approach to SM precision tests , 2016, Journal of High Energy Physics.

[19]  Andrea Benaglia,et al.  Search for resonant pair production of Higgs bosons decaying to two bottom quark-antiquark pairs in proton-proton collisions at 8 TeV , 2015 .

[20]  A. Belyaev,et al.  Precise test of Higgs boson properties via triple Higgs boson production in vector boson fusion at future colliders , 2018, Physical Review D.

[21]  S. Gkaitatzis,et al.  Search for pair production of Higgs bosons in the b (cid:22) bb (cid:22) b (cid:12)nal state using proton-proton collisions at p s = 13 TeV with the ATLAS detector , 2016 .

[22]  Jae Sik Lee,et al.  Higgs-boson-pair production H(→bb¯)H(→γγ) from gluon fusion at the HL-LHC and HL-100 TeV hadron collider , 2018, Physical Review D.

[23]  A. Papaefstathiou Discovering Higgs boson pair production through rare final states at a 100 TeV collider , 2015, 1504.04621.

[24]  Fons Rademakers,et al.  ROOT — An object oriented data analysis framework , 1997 .

[25]  S. Gieseke,et al.  Herwig++ 2.7 Release Note , 2013, 1310.6877.

[26]  Ulrich Haisch,et al.  Constraints on the quartic Higgs self-coupling from double-Higgs production at future hadron colliders , 2018, Journal of High Energy Physics.

[27]  D. Saha,et al.  Production of HHH and HHV(V=γ,Z) at the hadron colliders , 2017, 1708.03580.

[28]  Francesco Riva,et al.  Strong electroweak phase transitions in the Standard Model with a singlet , 2011, 1107.5441.

[29]  M. Selvaggi,et al.  hh + jet production at 100 TeV , 2018 .

[30]  J. Frost,et al.  Boosting Higgs pair production in the $$b\bar{b}b\bar{b}$$bb¯bb¯ final state with multivariate techniques , 2015, The European physical journal. C, Particles and fields.

[31]  Wolfgang Kilian,et al.  New physics in multi-Higgs boson final states , 2017, 1702.03554.

[32]  M. Gigg,et al.  Herwig++ physics and manual , 2008, 0803.0883.

[33]  A. Carmona,et al.  Uncovering the relation of a scalar resonance to the Higgs boson , 2016, 1606.02716.

[34]  Andreas Papaefstathiou,et al.  Triple Higgs boson production at a 100 TeV proton-proton collider , 2015, 1508.06524.

[35]  Donal O'Connell,et al.  Minimal extension of the standard model scalar sector , 2007 .

[36]  Benjamin Fuks,et al.  Scrutinizing the Higgs quartic coupling at a future 100 TeV proton–proton collider with taus and b-jets , 2017, 1704.04298.

[37]  M. Cacciari,et al.  FastJet user manual , 2011, 1111.6097.

[38]  S. Gieseke,et al.  Herwig++ 2.6 Release Note , 2012, 1205.4902.

[39]  R. Frederix,et al.  The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations , 2014, 1405.0301.

[40]  C. Collaboration,et al.  Identification of b-quark jets with the CMS experiment , 2012, 1211.4462.

[41]  Peter Winslow,et al.  Singlet-catalyzed electroweak phase transitions in the 100 TeV frontier , 2016, 1605.06123.

[42]  Paul Langacker,et al.  CERN LHC phenomenology of an extended standard model with a real scalar singlet , 2007, 0706.4311.

[43]  Andreas Papaefstathiou,et al.  Higgs boson self-coupling measurements using ratios of cross sections , 2013, 1301.3492.

[44]  Sahal Yacoob,et al.  ATLAS b-jet identification performance and efficiency measurement with tt¯ events in pp collisions at √s = 13 TeV , 2019 .

[45]  Jae Sik Lee,et al.  An exploratory study of Higgs-boson pair production , 2015, 1505.00957.

[46]  S. Forte,et al.  Parton distributions with LHC data , 2012, 1207.1303.

[47]  G. Bruno,et al.  Identification of b-quark jets with the CMS experiment , 2013 .

[48]  K. Kainulainen,et al.  Electroweak baryogenesis and dark matter from a singlet Higgs , 2012, 1210.4196.

[49]  Carroll L. Wainwright,et al.  Singlet-catalyzed electroweak phase transitions and precision Higgs boson studies , 2014, 1407.5342.

[50]  M. Pierini,et al.  Physics at a 100 TeV pp collider: Standard Model processes , 2016, 1607.01831.

[51]  F. Rademakers,et al.  ROOT — An object oriented data analysis framework , 1997 .

[52]  Ben Cooper,et al.  Non-resonant Higgs-pair production in the $$b\overline{b}$$bb¯$$b\overline{b}$$bb¯ final state at the LHC , 2014, 1410.2794.

[53]  Ben Cooper,et al.  Non-resonant Higgs-pair production in the bbbb final state at the LHC , 2015 .

[54]  S. Willocq,et al.  Probing a scalar singlet-catalyzed electroweak phase transition with resonant di-Higgs boson production in the 4b channel , 2019, Physical Review D.

[55]  A. Papaefstathiou,et al.  V HH production at the High-Luminosity LHC , 2018 .

[56]  Tilman Plehn,et al.  Quartic Higgs coupling at hadron colliders , 2005 .

[57]  Nicola De Filippis,et al.  FCC-hh: The Hadron Collider , 2019, The European Physical Journal Special Topics.

[58]  I. Lewis,et al.  Non-resonant collider signatures of a singlet-driven electroweak phase transition , 2017, 1704.05844.

[59]  K. Nikolopoulos,et al.  Physics at a 100 TeV pp collider: Higgs and EW symmetry breaking studies , 2016, 1606.09408.

[60]  J. Espinosa,et al.  Some cosmological implications of hidden sectors , 2008, 0809.3215.

[61]  R. Frederix,et al.  Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations , 2012, 1212.3460.

[62]  P. Motylinski,et al.  Angular correlations of lepton pairs from vector boson and top quark decays in Monte Carlo simulations , 2007, hep-ph/0702198.

[63]  R. Contino,et al.  Effective field theory analysis of double Higgs boson production via gluon fusion , 2015 .

[64]  F. Maltoni,et al.  Top-Yukawa contributions to bbH production at the LHC , 2018, Journal of High Energy Physics.

[65]  S. Dawson,et al.  Exploring resonant di-Higgs boson production in the Higgs singlet model , 2014, 1410.5488.

[66]  Q. Yan,et al.  Probing triple-Higgs productions via $4b2\gamma$ decay channel at a 100 TeV hadron collider , 2015, 1510.04013.

[67]  Gabe Shaughnessy,et al.  Singlet Higgs phenomenology and the electroweak phase transition , 2007, 0705.2425.

[68]  A. Alves,et al.  Di-Higgs production in the 4b channel and gravitational wave complementarity , 2019, Journal of High Energy Physics.

[69]  M. Cacciari,et al.  The anti-$k_t$ jet clustering algorithm , 2008, 0802.1189.

[70]  E. Vryonidou,et al.  Top-quark mass effects in double and triple Higgs production in gluon-gluon fusion at NLO , 2014, 1408.6542.

[71]  F. Maltoni,et al.  Probing the scalar potential via double Higgs boson production at hadron colliders , 2018, Journal of High Energy Physics.

[72]  M. Spannowsky,et al.  Standard model Higgs boson pair production in the (bb¯$$ b\overline{b} $$)(bb¯$$ b\overline{b} $$) final state , 2014, 1404.7139.