An Algorithm for Computing Voronoi Diagrams of General Generators in General Normed Spaces

Voronoi diagrams appear in many areas in science and technology and have diverse applications. Roughly speaking, they are a certain decomposition of a given space into cells, induced by a distance function and by a tuple of subsets called the generators or the sites. Voronoi diagrams have been the subject of extensive research during the last 35 years, and many algorithms for computing them have been published. However, these algorithms are for specific cases. They impose restrictions on either the space (often $R^2$ or $R^3$), the generators (distinct points, special shapes), the distance function (Euclidean or variations thereof) and more. Moreover, their implementation is not always simple and their success is not always guaranteed. We present an efficient and simple algorithm for computing Voronoi diagrams in general normed spaces, possibly infinite dimensional. We allow infinitely many generators of a general form. The algorithm computes each of the Voronoi cells independently of the others, and to any required precision. It can be generalized to other settings, such as manifolds, graphs and convex distance functions.

[1]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[2]  Robert L. Scot Drysdale,et al.  Voronoi diagrams based on convex distance functions , 1985, SCG '85.

[3]  Adrian Bowyer,et al.  Computing Dirichlet Tessellations , 1981, Comput. J..

[4]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[5]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .

[6]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[7]  Mariette Yvinec,et al.  Voronoi Diagrams in Higher Dimensions under Certain Polyhedral Distance Functions , 1998, Discret. Comput. Geom..

[8]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[9]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[10]  D. F. Watson Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..

[11]  Ngoc-Minh Lê,et al.  Abstract Voronoi diagram in 3-space , 2004, J. Comput. Syst. Sci..

[12]  G. L. Dirichlet Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. , 1850 .

[13]  Rex A. Dwyer Higher-dimensional voronoi diagrams in linear expected time , 1991, Discret. Comput. Geom..

[14]  Micha Sharir,et al.  Intersection and Closest-Pair Problems for a Set of Planar Discs , 1985, SIAM J. Comput..

[15]  D. T. Lee,et al.  Two-Dimensional Voronoi Diagrams in the Lp-Metric , 1980, J. ACM.

[16]  James H. Davenport,et al.  Voronoi diagrams of set-theoretic solid models , 1992, IEEE Computer Graphics and Applications.

[17]  Franz Aurenhammer,et al.  Voronoi Diagrams , 2000, Handbook of Computational Geometry.

[18]  Deok-Soo Kim,et al.  Euclidean Voronoi diagram of 3D balls and its computation via tracing edges , 2005, Comput. Aided Des..

[19]  Micha Sharir,et al.  Davenport-Schinzel sequences and their geometric applications , 1995, Handbook of Computational Geometry.

[20]  V. Klee On the complexity ofd- dimensional Voronoi diagrams , 1979 .

[21]  Rolf Klein,et al.  Concrete and Abstract Voronoi Diagrams , 1990, Lecture Notes in Computer Science.