Fabrication and analytical modeling of transverse mode piezoelectric energy harvesters

[1]  S. Choe,et al.  Analysis of Piezoelectric Materials for Energy Harvesting Devices under High-g Vibrations , 2007 .

[2]  Srinivas Tadigadapa,et al.  Lead zirconate titanate films for d33 mode cantilever actuators , 2003 .

[3]  Wan Y. Shih,et al.  Effect of length, width, and mode on the mass detection sensitivity of piezoelectric unimorph cantilevers , 2002 .

[4]  Shadrach Roundy,et al.  On the Effectiveness of Vibration-based Energy Harvesting , 2005 .

[5]  P. Muralt,et al.  Polarization reversal due to charge injection in ferroelectric films , 2005 .

[6]  L. Eric Cross,et al.  Ferroelectric and antiferroelectric films for microelectromechanical systems applications , 2000 .

[7]  J. Fluitman,et al.  Dependence of the quality factor of micromachined silicon beam resonators on pressure and geometry , 1992 .

[8]  Jung-Hyun Park,et al.  Comparison of Transduction Efficiency for Energy Harvester between Piezoelectric Modes , 2011 .

[9]  R. Igreja,et al.  Analytical evaluation of the interdigital electrodes capacitance for a multi-layered structure , 2004 .

[10]  L. Eric Cross,et al.  Dielectric hysteresis from transverse electric fields in lead zirconate titanate thin films , 1999 .

[11]  S. Beeby,et al.  Energy harvesting vibration sources for microsystems applications , 2006 .

[12]  J. Park,et al.  Modeling and Characterization of Piezoelectric $d_{33}$ -Mode MEMS Energy Harvester , 2010, Journal of Microelectromechanical Systems.

[13]  Ann Marie Sastry,et al.  Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems , 2008 .