Bounds on Double-Sided Myopic Algorithms for Unconstrained Non-monotoneSubmodular Maximization

Unconstrained submodular maximization captures many NP-hard combinatorial optimization problems, including Max-Cut, Max-Dicut, and variants of facility location problems. Recently, Buchbinder et al. [4] presented a surprisingly simple linear time randomized greedy-like online algorithm that achieves a constant approximation ratio of \(\frac{1}{2}\), matching optimally the hardness result of Feige et al. [10]. Motivated by the algorithm of Buchbinder et al., we introduce a precise algorithmic model called double-sided myopic algorithms. We show that while the algorithm of Buchbinder et al. can be realized as a randomized online double-sided myopic algorithm, no such deterministic algorithm, even with adaptive ordering, can achieve the same approximation ratio. With respect to the Max-Dicut problem, we relate the Buchbinder et al. algorithm and our myopic framework to the online algorithm and inapproximation of Bar-Noy and Lampis [2].

[1]  Uri Zwick,et al.  Improved Rounding Techniques for the MAX 2-SAT and MAX DI-CUT Problems , 2002, IPCO.

[2]  Luca Trevisan,et al.  Parallel Approximation Algorithms by Positive Linear Programming , 1998, Algorithmica.

[3]  George L. Nemhauser,et al.  Note--On "Location of Bank Accounts to Optimize Float: An Analytic Study of Exact and Approximate Algorithms" , 1979 .

[4]  Alexander Schrijver,et al.  A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time , 2000, J. Comb. Theory B.

[5]  Yossi Azar,et al.  Submodular Max-SAT , 2011, ESA.

[6]  William H. Cunningham On submodular function minimization , 1985, Comb..

[7]  Laurence A. Wolsey,et al.  Best Algorithms for Approximating the Maximum of a Submodular Set Function , 1978, Math. Oper. Res..

[8]  Amotz Bar-Noy,et al.  Online Maximum Directed Cut , 2009, ISAAC.

[9]  Anke van Zuylen Simpler 3/4-Approximation Algorithms for MAX SAT , 2011, WAOA.

[10]  Uriel Feige,et al.  Approximating the value of two power proof systems, with applications to MAX 2SAT and MAX DICUT , 1995, Proceedings Third Israel Symposium on the Theory of Computing and Systems.

[11]  Éva Tardos,et al.  Maximizing the Spread of Influence through a Social Network , 2015, Theory Comput..

[12]  Jan Vondrák,et al.  Submodular maximization by simulated annealing , 2010, SODA '11.

[13]  Mihalis Yannakakis,et al.  On the approximation of maximum satisfiability , 1992, SODA '92.

[14]  David S. Johnson,et al.  Approximation algorithms for combinatorial problems , 1973, STOC.

[15]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[16]  Uri Zwick,et al.  Combinatorial approximation algorithms for the maximum directed cut problem , 2001, SODA '01.

[17]  Noga Alon,et al.  Maximum directed cuts in acyclic digraphs , 2007, J. Graph Theory.

[18]  Jon Kleinberg,et al.  Maximizing the spread of influence through a social network , 2003, KDD '03.

[19]  Joseph Naor,et al.  A Tight Linear Time (1/2)-Approximation for Unconstrained Submodular Maximization , 2015, SIAM J. Comput..

[20]  Vahab S. Mirrokni,et al.  Non-monotone submodular maximization under matroid and knapsack constraints , 2009, STOC '09.

[21]  Vahab Mirrokni,et al.  Maximizing Non-Monotone Submodular Functions , 2007, FOCS 2007.

[22]  Ryan O'Donnell,et al.  Optimal Inapproximability Results for MAX-CUT and Other 2-Variable CSPs? , 2007, SIAM J. Comput..

[23]  Matthias Poloczek Bounds on Greedy Algorithms for MAX SAT , 2011, ESA.

[24]  Oded Regev Priority algorithms for makespan minimization in the subset model , 2002, Inf. Process. Lett..

[25]  S HochbaDorit Approximation Algorithms for NP-Hard Problems , 1997 .

[26]  G. Nemhauser,et al.  On the Uncapacitated Location Problem , 1977 .

[27]  Yuval Filmus,et al.  A Tight Combinatorial Algorithm for Submodular Maximization Subject to a Matroid Constraint , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[28]  Jianer Chen,et al.  Tight Bound on Johnson's Algorithm for Maximum Satisfiability , 1999, J. Comput. Syst. Sci..

[29]  Matthias Poloczek,et al.  Randomized variants of Johnson's algorithm for MAX SAT , 2011, SODA '11.

[30]  Rajeev Motwani,et al.  A combinatorial algorithm for MAX CSP , 2003, Inf. Process. Lett..

[31]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[32]  Jan Vondrák,et al.  Maximizing a Submodular Set Function Subject to a Matroid Constraint (Extended Abstract) , 2007, IPCO.

[33]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[34]  Paola Alimonti Non-oblivious Local Search for MAX 2-CCSP with Application to MAX DICUT , 1997, WG.

[35]  Allan Borodin,et al.  (Incremental) Priority Algorithms , 2002, SODA '02.

[36]  Maxim Sviridenko,et al.  A note on maximizing a submodular set function subject to a knapsack constraint , 2004, Oper. Res. Lett..

[37]  Joseph Naor,et al.  Nonmonotone Submodular Maximization via a Structural Continuous Greedy Algorithm - (Extended Abstract) , 2011, ICALP.

[38]  Russell Impagliazzo,et al.  Models of Greedy Algorithms for Graph Problems , 2004, SODA '04.

[39]  Jan Vondr Symmetry and Approximability of Submodular Maximization Problems , 2013 .

[40]  U. Feige,et al.  Maximizing Non-monotone Submodular Functions , 2011 .

[41]  Allan Borodin,et al.  Randomized priority algorithms , 2010, Theor. Comput. Sci..

[42]  Uriel Feige,et al.  Oblivious Algorithms for the Maximum Directed Cut Problem , 2013, Algorithmica.

[43]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[44]  Satoru Iwata,et al.  A combinatorial strongly polynomial algorithm for minimizing submodular functions , 2001, JACM.

[45]  Allan Borodin,et al.  Toward a Model for Backtracking and Dynamic Programming , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[46]  Matthias Poloczek,et al.  On Some Recent MAX SAT Approximation Algorithms , 2013, ArXiv.

[47]  Dorit S. Hochbaum,et al.  Approximation Algorithms for NP-Hard Problems , 1996 .

[48]  A. Peterkin Borodin , 2007, Canadian Medical Association Journal.

[49]  J. R. Walters Studies in Integer Programming , 1978 .