On the convergence of eigenvalues for mixed formulations
暂无分享,去创建一个
[1] I. Babuska. The finite element method with Lagrangian multipliers , 1973 .
[2] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .
[3] R. Kellogg,et al. A regularity result for the Stokes problem in a convex polygon , 1976 .
[4] Michel Fortin,et al. An analysis of the convergence of mixed finite element methods , 1977 .
[5] G. Fix. Review: Philippe G. Ciarlet, The finite element method for elliptic problems , 1979 .
[6] R. S. Falk,et al. Error estimates for mixed methods , 1980 .
[7] B. Mercier,et al. Eigenvalue approximation by mixed and hybrid methods , 1981 .
[8] Claes Johnson,et al. Analysis of some mixed finite element methods related to reduced integration , 1982 .
[9] J. Tinsley Oden,et al. Stability of some mixed finite element methods for Stokesian flows , 1984 .
[10] R. A. Nicolaides,et al. On the stability of bilinear-constant velocity-pressure finite elements , 1984 .
[11] L. D. Marini,et al. Two families of mixed finite elements for second order elliptic problems , 1985 .
[12] Jean E. Roberts,et al. Mixed and hybrid finite element methods , 1987 .
[13] M. Fortin,et al. E cient rectangular mixed fi-nite elements in two and three space variables , 1987 .
[14] K. Bathe,et al. A mixed displacement-based finite element formulation for acoustic fluid-structure interaction , 1995 .
[15] E. Christiansen,et al. Handbook of Numerical Analysis , 1996 .
[16] Klaus-Jürgen Bathe,et al. On Mixed Elements for Acoustic Fluid-Structure Interactions , 1997 .