ON THE LEAST-SQUARES SOLUTION OF THE DIRICHLET PROBLEM FOR THE ELLIPTIC MONGE-AMP ` ERE EQUATION IN DIMENSION TWO

We address the numerical solution of the Dirichlet problem for the real elliptic Monge- Ampere equation for arbitrary domains in two dimensions. The numerical method we discuss combines a least-squares formulation with a relaxation method. This approach leads to a sequence of Poisson- Dirichlet problems and another sequence of low dimensional algebraic eigenvalue problems of a new type. Mixed finite element approximations with a smoothing procedure are used for the computer implementation of our least-squares/relaxation methodology. Domains with curved boundaries are easily accommodated. Numerical experiments show the convergence of the computed solutions to their exact counterparts when such solutions exist. On the other hand, when smooth solutions do not exist, our least-squares based methodology produces generalized solutions which can be viewed as viscosity solutions, but in a sense different from Ishii & Lions'. Resume. Nousdans cet article la resolution numerique de l'´equation de Monge-Ampere elliptique dans des domaines de forme arbitraire en deux dimensions. Une methode de moindres carres est coupleeun algorithme de relaxation, conduisantla resolution d'une suite de problemes variation- nels lineaires, et d'une suite de problemes de valeurs propres en deux dimensions. Une approximation parelements finis mixtes coupleeune methode de regularisation est utilisee, de sorte que les domaines avec frontiere courbe sont traites facilement. Des experiences numeriques montrent l'efficacite de la methode, ainsi que des bonnes proprietes de convergence.

[1]  Paul-Louis George,et al.  A Numerical Study of Some Hessian Recovery Techniques on Isotropic and Anisotropic Meshes , 2011, SIAM J. Sci. Comput..

[2]  Adam M. Oberman,et al.  Two Numerical Methods for the elliptic Monge-Ampère equation , 2010 .

[3]  Roland Glowinski,et al.  Numerical methods for fully nonlinear elliptic equations , 2009 .

[4]  Xiaobing Feng,et al.  Mixed Finite Element Methods for the Fully Nonlinear Monge-Ampère Equation Based on the Vanishing Moment Method , 2007, SIAM J. Numer. Anal..

[5]  J. Remacle,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[6]  Danny C. Sorensen,et al.  A quadratically constrained minimization problem arising from PDE of Monge–Ampère type , 2009, Numerical Algorithms.

[7]  Xiaobing Feng,et al.  Vanishing Moment Method and Moment Solutions for Fully Nonlinear Second Order Partial Differential Equations , 2009, J. Sci. Comput..

[8]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[9]  Roland Glowinski,et al.  Numerical solution of the Dirichlet problem for a Pucci equation in dimension two. Application to homogenization , 2008, J. Num. Math..

[10]  Roland Glowinski,et al.  Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach (Encyclopedia of Mathematics and its Applications) , 2008 .

[11]  Roland Glowinski,et al.  Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach , 2008 .

[12]  Adam M. Oberman Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian , 2008 .

[13]  Klaus Böhmer,et al.  On Finite Element Methods for Fully Nonlinear Elliptic Equations of Second Order , 2008, SIAM J. Numer. Anal..

[14]  Roland Glowinski,et al.  Applications of operator-splitting methods to the direct numerical simulation of particulate and free-surface flows and to the numerical solution of the two-dimensional elliptic Monge-Ampère equation , 2008 .

[15]  Roland Glowinski,et al.  On the Numerical Solution of the Elliptic Monge—Ampère Equation in Dimension Two: A Least-Squares Approach , 2008 .

[16]  Bijan Mohammadi Optimal transport, shape optimization and global minimization , 2007 .

[17]  Roland Glowinski,et al.  Numerical methods for fully nonlinear elliptic equations of the Monge-Ampère type , 2006 .

[18]  R. Glowinski,et al.  An augmented Lagrangian approach to the numerical solution of the Dirichlet problem for the elliptic Monge-Ampère equation in two dimensions. , 2006 .

[19]  Roland Glowinski,et al.  On the numerical solution of a two-dimensional Pucci's equation with dirichlet boundary conditions : a least-squares approach , 2005 .

[20]  Roland Glowinski,et al.  Operator-Splitting Methods and Applications to the Direct Numerical Simulation of Particulate Flow and to the Solution of the Elliptic Monge-Ampere Equation , 2005 .

[21]  Roland Glowinski,et al.  Numerical solution of the two-dimensional elliptic Monge–Ampère equation with Dirichlet boundary conditions: a least-squares approach , 2004 .

[22]  Roland Glowinski,et al.  Numerical solution of the two-dimensional elliptic Monge-Ampère equation with Dirichlet boundary conditions: an augmented Lagrangian approach , 2003 .

[23]  R. Glowinski Finite element methods for incompressible viscous flow , 2003 .

[24]  L. Caffarelli Non linear elliptic theory and the Monge-Ampere equation , 2002, math/0212393.

[25]  Cristian E. Gutiérrez,et al.  The Monge―Ampère Equation , 2001 .

[26]  Roland Glowinski,et al.  An approximate factorization/least squares solution method for a mixed finite element approximation of the Cahn-Hilliard equation , 1996 .

[27]  L. Caffarelli,et al.  Fully Nonlinear Elliptic Equations , 1995 .

[28]  P. Lions,et al.  Viscosity solutions of fully nonlinear second-order elliptic partial differential equations , 1990 .

[29]  Finite-element Approximations and Iterative Solutions of a Fourth-order Elliptic Variational Inequality , 1984 .

[30]  L. Reinhart,et al.  On the numerical analysis of the Von Karman equations: Mixed finite element approximation and continuation techniques , 1982 .

[31]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[32]  R. Glowinski Lectures on Numerical Methods for Non-Linear Variational Problems , 1981 .

[33]  R. Glowinski,et al.  Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem , 1977 .