Synthetic magnetism for solitons in optomechanical array

[1]  L. Akinyemi,et al.  Discrete modulation instability and localized modes in chiral molecular chains with first- and third-neighbor interactions , 2023, Physica Scripta.

[2]  L. Akinyemi Shallow ocean soliton and localized waves in extended (2 + 1)-dimensional nonlinear evolution equations , 2023, Physics Letters A.

[3]  P. Djorwé,et al.  Hidden attractors and metamorphoses of basin boundaries in optomechanics , 2022, Nonlinear Dynamics.

[4]  L. Akinyemi,et al.  Integrability, multi-solitons, breathers, lumps and wave interactions for generalized extended Kadomtsev–Petviashvili equation , 2022, Nonlinear Dynamics.

[5]  S. Y. Doka,et al.  Discrete breathers incited by the intra-dimers parameter in microtubulin protofilament array , 2022, The European Physical Journal Plus.

[6]  J. F. Gómez‐Aguilar,et al.  The novel soliton solutions for the conformable perturbed nonlinear Schrödinger equation , 2022, Modern Physics Letters B.

[7]  S. Y. Doka,et al.  Discrete solitons in nonlinear optomechanical array , 2021, Chaos, Solitons & Fractals.

[8]  E. Knill,et al.  Direct observation of deterministic macroscopic entanglement , 2020, Science.

[9]  J. Y. Effa,et al.  Multistability, staircases, and optical high-order sideband combs in optomechanics , 2020 .

[10]  Sifeu Takougang Kingni,et al.  Antimonotonicity, coexisting attractors and bursting oscillations in optomechanical system: Analysis and electronic implementation , 2020 .

[11]  Cheng Yang,et al.  Self-Organized Synchronization of Phonon Lasers. , 2020, Physical review letters.

[12]  Fuli Li,et al.  Generating synthetic magnetism via Floquet engineering auxiliary qubits in phonon-cavity-based lattice , 2019, New Journal of Physics.

[13]  E. Verhagen,et al.  Synthetic gauge fields for phonon transport in a nano-optomechanical system , 2018, Nature Nanotechnology.

[14]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[15]  B. Djafari-Rouhani,et al.  Self-organized synchronization of mechanically coupled resonators based on optomechanics gain-loss balance , 2019 .

[16]  B. Djafari-Rouhani,et al.  Exceptional Point Enhances Sensitivity of Optomechanical Mass Sensors , 2019, Physical Review Applied.

[17]  B. Djafari-Rouhani,et al.  Low-power phonon lasing through position-modulated Kerr-type nonlinearity , 2018, Scientific Reports.

[18]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[19]  M. Miri,et al.  Optomechanical frequency combs , 2018 .

[20]  Demetrios N. Christodoulides,et al.  Non-Hermitian physics and PT symmetry , 2018, Nature Physics.

[21]  C. Lacor,et al.  Chaos , 1876, Molecular Vibrations.

[22]  Lan Yang,et al.  Exceptional points enhance sensing in an optical microcavity , 2017, Nature.

[23]  Demetrios N. Christodoulides,et al.  Enhanced sensitivity at higher-order exceptional points , 2017, Nature.

[24]  Ewold Verhagen,et al.  Nonlinear cavity optomechanics with nanomechanical thermal fluctuations , 2016, Nature Communications.

[25]  Jie Luo,et al.  Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering , 2016, Nature Physics.

[26]  O. Painter,et al.  Pseudomagnetic fields for sound at the nanoscale , 2016, Proceedings of the National Academy of Sciences.

[27]  F. Nori,et al.  Optomechanically induced stochastic resonance and chaos transfer between optical fields , 2016, Nature Photonics.

[28]  Ru Zhang,et al.  Optical High-Order Sideband Comb Generation in a Photonic Molecule Optomechanical System , 2016, IEEE Journal of Quantum Electronics.

[29]  A. Clerk,et al.  Quantum squeezing of motion in a mechanical resonator , 2015, Science.

[30]  O. Painter,et al.  Optomechanical creation of magnetic fields for photons on a lattice , 2015, 1502.07646.

[31]  P. Woafo,et al.  Robustness of continuous-variable entanglement via geometrical nonlinearity , 2014, 1405.4483.

[32]  H. Ramp,et al.  Nonlinear optomechanics in the stationary regime , 2014, 1402.3596.

[33]  P. Woafo,et al.  Limiting effects of geometrical and optical nonlinearities on the squeezing in optomechanics , 2013, 1304.1657.

[34]  P. Woafo,et al.  Classical and semiclassical studies of nonlinear nano-optomechanical oscillators , 2013 .

[35]  Zongfu Yu,et al.  Realizing effective magnetic field for photons by controlling the phase of dynamic modulation , 2012, Nature Photonics.

[36]  W. Marsden I and J , 2012 .

[37]  Journal of the Optical Society of America , 1950, Nature.