Interactions between surface water and ground water and effects on mercury transport in the north-central Everglades

...............................................................................................................................................................................

[1]  C. Bolster,et al.  Determination of Specific Yield for the Biscayne Aquifer with a Canal‐Drawdown Test , 2001, Ground water.

[2]  K. Cunningham,et al.  Hydrogeology of the gray limestone aquifer in southern Florida , 2000 .

[3]  H. Solo-Gabriele,et al.  Evaluation of the use of reach transmissivity to quantify leakage beneath Levee 31N, Miami-Dade County, Florida , 2000 .

[4]  D. Genereux,et al.  Water exchange between canals and surrounding aquifer and wetlands in the Southern Everglades, USA , 1999 .

[5]  M. Guardo Hydrologic balance for a subtropical treatment wetland constructed for nutrient removal 1 Presented , 1999 .

[6]  D. Genereux,et al.  A Canal Drawdown Experiment for Determination of Aquifer Parameters , 1998 .

[7]  A. Moench,et al.  Analytical Solutions and Computer Programs for Hydraulic Interaction of Stream-Aquifer Systems , 1998 .

[8]  Reed C. Harris,et al.  Increases in Fluxes of Greenhouse Gases and Methyl Mercury following Flooding of an Experimental Reservoir , 1997 .

[9]  Richard S. Tomasello,et al.  Hydrodynamic simulations of a constructed wetland in South Florida , 1995 .

[10]  K. Rutchey,et al.  Inland Wetland Change Detection in the Everglades Water Conservation Area 2A Using a Time Series of Normalized Remotely Sensed Data , 1995 .

[11]  J. Rudd,et al.  Importance of Wetlands as Sources of Methyl Mercury to Boreal Forest Ecosystems , 1994 .

[12]  Steven M. Davis,et al.  Fluctuations in sawgrass and cattail densities in Everglades Water Conservation Area 2A under varying nutrient, hydrologic and fire regimes. , 1993 .

[13]  D. Krabbenhoft,et al.  THE ROLE OF GROUNDWATER TRANSPORT IN AQUATIC MERCURY CYCLING , 1992 .

[14]  Ralph Mitchell,et al.  Sulfate stimulation of mercury methylation in freshwater sediments , 1992 .

[15]  Andjelko Soro,et al.  Determination of Hydraulic Conductivity of Porous Media from Grain-Size Composition , 1992 .

[16]  Johnnie E. Fish,et al.  Hydrogeology of the surficial aquifer system, Dade County, Florida , 1991 .

[17]  D. Chin A Method to Estimate Canal Leakage to the Biscayne Aquifer, Dade County, Florida , 1990 .

[18]  H. Bouwer The Bouwer and Rice Slug Test — An Updatea , 1989 .

[19]  D. L. Peck,et al.  Hydrogeology, aquifer characteristics, and ground-water flow of the surficial aquifer system, Broward County, Florida , 1988 .

[20]  David K. Beach Depositional And Diagenetic History Of Pliocene-Pleistocene Carbonates Of Northwestern Great Bahama Bank; Evolution Of A Carbonate Platform , 1982 .

[21]  W. D. Kovacs,et al.  An Introduction to Geotechnical Engineering , 1981 .

[22]  W. L. Miller Effects of bottom sediments on infiltration from the Miami and tributary canals to the Biscayne aquifer, Dade County, Florida , 1978 .

[23]  W. B. Scott Hydraulic Conductivity and Water Quality of the Shallow Aquifer Palm Beach County, Florida , 1977 .

[24]  R. Perkins PART II: Depositional Framework of Pleistocene Rocks in South Florida , 1977 .

[25]  P. Enos PART I: Holocene Sediment Accumulations of the South Florida Shelf Margin , 1977 .

[26]  H. Bouwer,et al.  A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells , 1976 .

[27]  W. Broecker,et al.  Uranium-Series Dating of Corals and Oolites from Bahaman and Florida Key Limestones , 1965, Science.