Multiscale Photon-Limited Spectral Image Reconstruction

This paper studies photon-limited spectral intensity estimation and proposes a spatially and spectrally adaptive, nonparametric method for estimating spectral intensities from Poisson observations. Specifically, our method searches through estimates defined over a family of recursive dyadic partitions in both the spatial and spectral domains, and finds the one that maximizes a penalized log likelihood criterion. The key feature of this approach is that the partition cells are anisotropic across the spatial and spectral dimensions, so that the method adapts to varying degrees of spatial and spectral smoothness, even when the respective degrees of smoothness are not known a priori. The proposed approach is based on the key insight that spatial boundaries and singularities exist in the same locations in every spectral band, even though the contrast or perceptibility of these features may be very low in some bands. The incorporation of this model into the reconstruction results in significant performance gains. Furthermore, for spectral intensities that belong to the anisotropic -Besov function class, the proposed approach is shown to be near-minimax optimal. The upper bounds on the risk function, which is the expected squared Hellinger distance between the true intensity and the estimate obtained using the proposed approach, matches the best possible lower bound up to a log factor for certain degrees of spatial and spectral smoothness. Experiments conducted on realistic data sets show that the proposed method can reconstruct the spatial and the spectral inhomogeneities very well even when the observations are extremely photon-limited (i.e., less than 0.1 photon per voxel).

[1]  Robert D. Nowak,et al.  Multiscale Modeling and Estimation of Poisson Processes with Application to Photon-Limited Imaging , 1999, IEEE Trans. Inf. Theory.

[2]  Robert D. Nowak,et al.  Fast multiresolution photon-limited image reconstruction , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[3]  David L. Donoho,et al.  Nonlinear Wavelet Methods for Recovery of Signals, Densities, and Spectra from Indirect and Noisy Da , 1993 .

[4]  Mohamed-Jalal Fadili,et al.  Wavelets, Ridgelets, and Curvelets for Poisson Noise Removal , 2008, IEEE Transactions on Image Processing.

[5]  E. Kolaczyk Bayesian Multiscale Models for Poisson Processes , 1999 .

[6]  David M. Haaland,et al.  Hyperspectral imaging of biological targets: the difference a high resolution spectral dimension and multivariate analysis can make , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[7]  I. Johnstone,et al.  Minimax estimation via wavelet shrinkage , 1998 .

[8]  M. Robles,et al.  Multispectral MRI De-noising Using Non-Local Means. , 2007 .

[9]  Robert D. Nowak,et al.  A statistical multiscale framework for Poisson inverse problems , 2000, IEEE Trans. Inf. Theory.

[10]  R. Nowak,et al.  Multiscale likelihood analysis and complexity penalized estimation , 2004, math/0406424.

[11]  A. Kolmogorov,et al.  Entropy and "-capacity of sets in func-tional spaces , 1961 .

[12]  E. Kolaczyk WAVELET SHRINKAGE ESTIMATION OF CERTAIN POISSON INTENSITY SIGNALS USING CORRECTED THRESHOLDS , 1999 .

[13]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[14]  R. Willett,et al.  Multiscale Reconstruction of Photon-Limited Hyperspectral Data , 2007, 2007 IEEE/SP 14th Workshop on Statistical Signal Processing.

[15]  P. Tseng,et al.  Automatic Smoothing With Wavelets for a Wide Class of Distributions , 2004 .

[16]  Robert D. Nowak,et al.  Platelets: a multiscale approach for recovering edges and surfaces in photon-limited medical imaging , 2003, IEEE Transactions on Medical Imaging.

[17]  A. Tsybakov,et al.  Minimax theory of image reconstruction , 1993 .

[18]  Andrew R. Barron,et al.  Mixture Density Estimation , 1999, NIPS.

[19]  M. Jansen Multiscale Poisson data smoothing , 2006 .

[20]  Douglas L. Jones,et al.  Wavelet-based hyperspectral image estimation , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[21]  E. Candès,et al.  Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges , 2000 .

[22]  R. Nowak,et al.  A multiscale MAP estimation method for Poisson inverse problems , 1998, Conference Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers (Cat. No.98CH36284).

[23]  G. Nason,et al.  A Haar-Fisz Algorithm for Poisson Intensity Estimation , 2004 .

[24]  F. J. Anscombe,et al.  THE TRANSFORMATION OF POISSON, BINOMIAL AND NEGATIVE-BINOMIAL DATA , 1948 .

[25]  Martin Greiner,et al.  Wavelets , 2018, Complex..

[26]  Paul Scheunders,et al.  Denoising of multispectral images using wavelet thresholding , 2004, SPIE Remote Sensing.

[27]  Piotr Fryzlewicz,et al.  Data-driven wavelet-Fisz methodology for nonparametric function estimation , 2007, 0711.0883.

[28]  Richard G. Baraniuk,et al.  A new compressive imaging camera architecture using optical-domain compression , 2006, Electronic Imaging.

[29]  Robert Nowak,et al.  Multiscale generalised linear models for nonparametric function estimation , 2005 .

[30]  Rebecca Willett,et al.  MULTISCALE INTENSITY ESTIMATION FOR MULTI-PHOTON MICROSCOPY , 2007, 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[31]  Mauro Maggioni,et al.  Hyper-spectral microscopic discrimination between normal and cancerous colon biopsies , 2007 .

[32]  E. Kolaczyk,et al.  Nonparametric Estimation of Intensity Maps Using Haar Wavelets and Poisson Noise Characteristics , 2000 .

[33]  Michael H. Neumann MULTIVARIATE WAVELET THRESHOLDING IN ANISOTROPIC FUNCTION SPACES , 2000 .

[34]  Rebecca Willett,et al.  Multiscale Analysis of Photon-Limited Astronomical Images , 2007 .

[35]  C. Elvidge,et al.  An Airborne Perspective On Vegetation Phenology From The Analysis Of Aviris Data Sets Over The Jasper Ridge Biological Preserve , 1990, 10th Annual International Symposium on Geoscience and Remote Sensing.

[36]  Amos Storkey,et al.  Advances in Neural Information Processing Systems 20 , 2007 .

[37]  Jean-Michel Morel,et al.  A non-local algorithm for image denoising , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[38]  D. Donoho,et al.  Translation-Invariant De-Noising , 1995 .

[39]  L. Lucy An iterative technique for the rectification of observed distributions , 1974 .

[40]  Alex Zehnder,et al.  The Reuven Ramaty high-energy solar spectroscopic imager (RHESSI) mission , 2003, SPIE Optics + Photonics.

[41]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[42]  Ashwin A. Wagadarikar,et al.  Single disperser design for coded aperture snapshot spectral imaging. , 2008, Applied optics.

[43]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[44]  M E Gehm,et al.  Single-shot compressive spectral imaging with a dual-disperser architecture. , 2007, Optics express.

[45]  Yuhong Yang,et al.  Information-theoretic determination of minimax rates of convergence , 1999 .

[46]  Les A. Piegl,et al.  Curve and Surface Fitting , 1997 .

[47]  Robert D. Nowak,et al.  Multiscale Poisson Intensity and Density Estimation , 2007, IEEE Transactions on Information Theory.

[48]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[49]  R. DeVore,et al.  Nonlinear approximation , 1998, Acta Numerica.

[50]  Giovanni Poggi,et al.  Compression of multispectral images by three-dimensional SPIHT algorithm , 2000, IEEE Trans. Geosci. Remote. Sens..

[51]  Rebecca Willett,et al.  Multiscale reconstruction for computational spectral imaging , 2007, Electronic Imaging.

[52]  William H. Richardson,et al.  Bayesian-Based Iterative Method of Image Restoration , 1972 .

[53]  C. Burrus,et al.  Noise reduction using an undecimated discrete wavelet transform , 1996, IEEE Signal Processing Letters.

[54]  Rebecca Willett,et al.  Multiscale Intensity Estimation for Marked Poisson Processes , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[55]  Charles Kervrann,et al.  An adaptive window approach for Poisson noise reduction and structure preserving in confocal microscopy , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[56]  A. Antoniadis,et al.  Wavelet shrinkage for natural exponential families with quadratic variance functions , 2001 .

[57]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .