A Biased View of Topology as a Tool in Functional Analysis

A survey about “Topology as a tool in functional analysis” would be such a giant enterprise that we have, naturally, chosen to give here “Our biased views of topology as a tool in functional analysis”. The consequence of this is that a big portion of this long paper deals with topics that we have been actively working on during the past years. These topics range from metrizability of compact spaces (and their consequences in functional analysis), networks in topological spaces (and their consequences in renorming theory of Banach spaces), distances to spaces of functions (and their applications to the study of pointwise and weak compactness), James’ weak compactness theorem (and their applications to variational problems and risk measures). Some of the results collected here are a few years old while many others are brand new. A few of them are first published here and most of them have been often used in different areas since their publication. The survey is completed with a section devoted to references to some of what we consider the last major achievements in the area in recent years.

[1]  F. Delbaen,et al.  A class of specialLα spaces , 1980 .

[2]  S. Argyros,et al.  The cofinal property of the Reflexive Indecomposable Banach spaces , 2010, 1003.0870.

[3]  F. Bombal,et al.  Strictly Singular and Strictly Cosingular Operators on C(K, E) , 1989 .

[4]  Chapter 24 - Ramsey Methods in Banach Spaces , 2003 .

[5]  Ziqiu Yun,et al.  Generalized Metric Spaces , 2016 .

[6]  G. Choquet Ensembles $K$-analytiques et $K$-sousliniens. Cas général et cas métrique , 1959 .

[7]  S. Negrepontis Banach Spaces and Topology , 1984 .

[8]  G. Godefroy,et al.  Subspaces of $ c_0 ({\Bbb N}) $ and Lipschitz isomorphisms , 2000 .

[9]  J. Banaś,et al.  Measures of noncompactness in Banach sequence spaces , 1992 .

[10]  Petr Hájek,et al.  Banach Space Theory , 2011 .

[11]  G. Plebanek A construction of a Banach space C(K) with few operators , 2004 .

[12]  J. Jayne,et al.  σ-Fragmentability of Multivalued Maps and Selection Theorems , 1993 .

[13]  Matthew Tarbard Hereditarily indecomposable, separable ℒ∞ Banach spaces with ℓ1 dual having few but not very few operators , 2012, J. Lond. Math. Soc..

[14]  M. Valdivia,et al.  A Nonlinear Transfer Technique for Renorming , 2008 .

[15]  Sur le théorème du graphe fermé , 1966 .

[16]  W. F. Eberlein Weak Compactness in Banach Spaces: I. , 1947, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Christian Rosendal,et al.  Banach spaces without minimal subspaces , 2007, 0711.1350.

[18]  J. Orihuela,et al.  Network characterization of Gul'ko compact spaces and their relatives☆ , 2004 .

[19]  J. Orihuela,et al.  A sequential property of set-valued maps , 1991 .

[20]  V. Srivatsa Baire class 1 selectors for upper semicontinuous set-valued maps , 1993 .

[21]  J. Orihuela,et al.  On compactness in locally convex spaces , 1987 .

[22]  R. Haydon Locally uniformly convex norms in Banach spaces and their duals , 2006, math/0610420.

[23]  M. Raja Locally uniformly rotund norms , 1999 .

[24]  G. Jameson Topology and Normed Spaces , 1974 .

[25]  I. Namioka,et al.  The Lindelöf property and fragmentability , 2000 .

[26]  J. Orihuela,et al.  Metrizability of precompact subsets in (LF)-spaces , 1986, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[27]  S. Todorcevic,et al.  Banach spaces and Ramsey Theory: some open problems , 2010, 1006.2668.

[28]  M. Valdivia Topics in Locally Convex Spaces , 1982 .

[29]  A quantitative version of Krein's Theorem , 2005 .

[30]  J. Orihuela On Weakly Lindelöf Banach Spaces , 1992 .

[31]  B. Cascales OnK-analytic locally convex spaces , 1987 .

[32]  Even infinite-dimensional real Banach spaces , 2007, 0704.1459.

[33]  A criterion for the metrizability of a compact convex set in terms of the set of extreme points , 1972 .

[34]  I. Namioka,et al.  Banach Spaces and Topology (II) , 2003 .

[35]  Asymptotic geometry of banach spaces and uniform quotient maps , 2012, 1209.0501.

[36]  LUR renormings through Deville’s Master Lemma , 2009 .

[37]  P. Kenderov,et al.  Fragmentability and Sigma‐Fragmentability of Banach Spaces , 1999 .

[38]  R. Cauty Solution du problème de point fixe de Schauder , 2001 .

[39]  A quantitative approach to weak compactness in Fréchet spaces and spaces C(X) , 2013 .

[40]  V. Tkachuk A space Cp(X) is dominated by irrationals if and only if it is K-analytic , 2005 .

[41]  P. Enflo On the invariant subspace problem for Banach spaces , 1987 .

[42]  A hereditarily indecomposable $ {\mathcal{L}_{\infty}} $-space that solves the scalar-plus-compact problem , 2011 .

[43]  J. Lindenstrauss,et al.  Orlicz Sequence Spaces , 1977 .

[44]  A quantitative version of James's Compactness Theorem , 2010, Proceedings of the Edinburgh Mathematical Society.

[45]  S. Argyros,et al.  Interpolating hereditarily indecomposable Banach spaces , 1997, math/9712277.

[46]  C. Rogers,et al.  σ-fragmentable Banach spaces , 1992 .

[47]  Gilles Godefroy,et al.  Chapter 18 – Renormings of Banach Spaces , 2001 .

[48]  C. Bessaga,et al.  Selected topics in infinite-dimensional topology , 1975 .

[49]  Assaf Naor,et al.  Metric cotype , 2005, SODA '06.

[50]  H. H. Schaefer,et al.  Topological Vector Spaces , 1967 .

[51]  A coercive James’s weak compactness theorem and nonlinear variational problems , 2012 .

[52]  A. Ostaszewski TOPOLOGY AND BOREL STRUCTURE , 1976 .

[53]  Distance to spaces of continuous functions , 2006 .

[54]  T. Schlumprecht,et al.  On the Richness of the Set of p’s in Krivine’s Theorem , 1995 .

[55]  S. Ferrari,et al.  Metrization theory and the Kadec property , 2016 .

[56]  D. Fremlin,et al.  Lindelöf modifications and K -analytic spaces , 1993 .

[57]  D. H. Hyers Linear topological spaces , 1945 .

[58]  H. Rosenthal A Characterization of Banach Spaces Containing l1 , 1974 .

[59]  S. Argyros On nonseparable Banach spaces , 1982 .

[60]  Francisco Gallego Lupiáñez,et al.  On Covering Properties , 1989 .

[61]  V. Tkachuk,et al.  Domination by second countable spaces and Lindelöf Σ-property , 2011 .

[62]  M. Raja Kadec norms and Borel sets in a Banach space , 1999 .

[63]  P. Dodos Banach Spaces and Descriptive Set Theory: Selected Topics , 2010 .

[64]  I. Namioka Radon-Nikodým Compacta , 2003 .

[65]  Measure of weak noncompactness and real interpolation of operators , 2000, Bulletin of the Australian Mathematical Society.

[66]  T. Schlumprecht An arbitrarily distortable Banach space , 1991, math/9201225.

[67]  Antonio Guarnieri,et al.  WITH THE COLLABORATION OF , 2009 .

[68]  Isometries on extremely non-complex Banach spaces , 2009, Journal of the Institute of Mathematics of Jussieu.

[69]  G. Gruenhage Covering properties on X2⧹Δ, W-sets, and compact subsets of Σ-products , 1984 .

[70]  V. Fonf,et al.  Boundaries of Asplund spaces , 2010 .

[71]  Geometrical implications of the existence of very smooth bump functions in Banach spaces , 1989 .

[72]  W. T. Gowers,et al.  The unconditional basic sequence problem , 1992, math/9205204.

[73]  L. Schwartz Théorie des distributions , 1966 .

[74]  G. Godefroy Some Applications of Simons’ Inequality , 2000 .

[75]  Seminorms related to weak compactness and to Tauberian operators , 1990 .

[76]  J. Orihuela On ${{\cal T}_{\!p}}$-Locally Uniformly Rotund Norms , 2013 .

[77]  Spaces having a small diagonal , 1999, math/9910153.

[78]  B. S. Tsirel'son Not every Banach space contains an imbedding oflp or c0 , 1974 .

[79]  J. Orihuela,et al.  Locally uniformly rotund renorming and fragmentability , 1997 .

[80]  I. Namioka Fragmentability in banach spaces: Interaction of topologies , 2010 .

[81]  W. Schachermayer,et al.  Every Radon-Nikodym Corson compact space is Eberlein compact , 1991 .

[82]  Gary Gruenhage,et al.  Metrizable Spaces and Generalizations , 2002 .

[83]  G. A. Edgar,et al.  Topological properties of Banach spaces , 1984 .

[84]  A. S. Granero,et al.  Convexity and w*-compactness in Banach spaces , 2004 .

[85]  Property (β) and uniform quotient maps , 2012 .

[86]  P. Koszmider,et al.  Extremely non-complex C(K) spaces , 2008, 0811.0577.

[87]  J. E. Vaughan,et al.  Encyclopedia of General Topology , 2004 .

[88]  Richard J. Smith,et al.  Renormings of C(K) spaces , 2010 .

[89]  A. Kryczka Quantitative approach to weak noncompactness in the polygon interpolation method , 2004 .

[90]  S. Argyros,et al.  Genericity and amalgamation of classes of Banach spaces , 2007 .

[91]  S. Argyros,et al.  Methods in the Theory of Hereditarily Indecomposable Banach Spaces , 2004 .

[92]  B. Cascales,et al.  A NEW LOOK AT COMPACTNESS VIA DISTANCES TO FUNCTION SPACES , 2008 .

[93]  M. Canela K-analytic locally convex spaces , 1982 .

[94]  On classes of Banach spaces admitting "small" universal spaces , 2008, 0805.2043.

[95]  K. Floret Some Aspects of the Theory of Locally Convex Inductive Limits , 1980 .

[96]  A. D. Arvanitakis Some remarks on Radon-Nikodym compact spaces , 2002 .

[97]  Inner characterizations of weakly compactly generated Banach spaces and their relatives , 2004 .

[98]  Dentability indices with respect to measures of non-compactness , 2007 .

[99]  On Locally Uniformly Rotund Renormings in C(K) Spaces , 2010, Canadian Journal of Mathematics.

[100]  L. Oncina A new characterization of Eberlein compacta , 2001 .

[101]  Per Enflo,et al.  A counterexample to the approximation problem in Banach spaces , 1973 .

[102]  S. Argyros,et al.  A hereditarily indecomposable L_\infty-space that solves the scalar-plus-compact problem , 2009, 0903.3921.

[103]  Stanisław Prus,et al.  Measure of weak noncompactness under complex interpolation , 2001 .

[104]  Property $(\beta)$ and uniform quotient maps , 2010, 1010.0184.

[105]  P. Koszmider Banach spaces of continuous functions with few operators , 2004 .

[106]  P. Koszmider A survey on Banach spaces C(K) with few operators , 2010 .

[107]  C. Rogers,et al.  σ-fragmented Banach spaces II , 1994 .

[108]  Stefan Heinrich,et al.  Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces , 1982 .

[109]  A. Grothendieck Criteres de Compacite dans les Espaces Fonctionnels Generaux , 1952 .

[110]  A. S. Granero An extension of the Krein-Smulian theorem. , 2006 .

[111]  V. I. Lomonosov,et al.  Invariant subspaces for the family of operators which commute with a completely continuous operator , 1973 .

[112]  Richard Smith,et al.  Strictly convex norms and topology , 2010, 1012.5595.

[113]  M. Valdivia,et al.  On Weakly Locally Uniformly Rotund Banach Spaces , 1999 .

[114]  J. Orihuela,et al.  James boundaries and σ-fragmented selectors , 2008 .

[115]  An infinite Ramsey theorem and some Banach-space dichotomies , 2002, math/0501105.

[116]  M. Fabian,et al.  Gâteaux differentiability of convex functions and topology : weak asplund spaces , 1997 .

[117]  M. López-Pellicer,et al.  Descriptive Topology in Selected Topics of Functional Analysis , 2011 .

[118]  Aleksandr Vladimirovich Arkhangelʹskiĭ Topological function spaces , 1992 .

[119]  M. Raja On dual locally uniformly rotund norms , 2002 .

[120]  Lebesgue property for convex risk measures on Orlicz spaces , 2012 .

[121]  G. Androulakis,et al.  Strictly Singular, Non‐Compact Operators Exist on the Space of Gowers and Maurey , 2001, math/0102008.

[122]  Richard L. Lenz,et al.  The Lindelf property in Banach spaces , 2003 .

[123]  R. Cauty Un espace métrique linéaire qui n'est pas un rétracte absolu , 1994 .

[124]  Descriptive Set Theory and the Geometry of Banach Spaces , 2009 .

[125]  O. Kalenda Valdivia compact spaces in topology and Banach space theory. , 2000 .

[126]  P. Koszmider,et al.  A continuous image of a Radon-Nikod\'ym compact which is not Radon-Nikod\'{y}m , 2011, 1112.4152.

[127]  W. Szlenk,et al.  The non-existence of a separable reflexive Banach space universal for all separable reflexive Banach spaces , 1968 .

[128]  E. Michael Continuous Selections. I , 1956 .

[129]  Bernardo Cascales,et al.  The quantitative difference between countable compactness and compactness , 2008 .

[130]  J. Orihuela Pointwise Compactness in Spaces of Continuous Functions , 1987 .

[131]  J. Orihuela,et al.  The number of K-determination of topological spaces , 2012 .

[132]  Analytic sets of Banach spaces , 2010 .

[133]  Yun-Su Kim A Solution to the Invariant Subspace Problem , 2009 .

[134]  G. Gruenhage A NOTE ON GUL'KO COMPACT SPACES , 1987 .

[135]  A. Martinón MEASURES OF WEAK NONCOMPACTNESS IN BANACH SEQUENCE SPACES , 2022 .

[136]  M. R. Galán,et al.  Compactness, Optimality, and Risk , 2013 .

[137]  P. Koszmider A C(K) Banach space which does not have the Schroeder-Bernstein property , 2011, 1106.2917.

[138]  J. Christensen Topology and Borel structure : descriptive topology and set theory with applications to functional analysis and measure theory , 1974 .

[139]  S. Semmes Topological Vector Spaces , 2003 .

[140]  J. Lindenstrauss,et al.  Geometric Nonlinear Functional Analysis , 1999 .

[141]  R. D. Bourgin,et al.  Geometric Aspects of Convex Sets with the Radon-Nikodym Property , 1983 .

[142]  A. S. Granero,et al.  The class of universally Krein–Šmulian Banach spaces , 2007 .

[143]  E. A. Reznichenko Convex compact spaces and their maps , 1990 .

[144]  R. Hansell DESCRIPTIVE SETS AND THE TOPOLOGY OF NONSEPARABLE BANACH SPACES , 2001 .

[145]  On unconditionally saturated Banach spaces , 2008, 0805.2046.

[146]  A coding of separable Banach spaces. Analytic and coanalytic families of Banach spaces , 2002 .

[147]  R. DeVille,et al.  Smoothness and renormings in Banach spaces , 1993 .

[148]  B. Cascales,et al.  Measures of weak noncompactness in Banach spaces , 2009 .

[149]  Michael A. Coco Biorthogonal systems in Banach spaces , 2003 .

[150]  J. Diestel Sequences and series in Banach spaces , 1984 .

[151]  M. Raja Weak∗ locally uniformly rotund norms and descriptive compact spaces , 2003 .

[152]  Richard J. Smith Strictly convex norms, _{}-diagonals and non-Gruenhage spaces , 2012 .

[153]  Karin Rothschild,et al.  A Course In Functional Analysis , 2016 .

[154]  H. Corson Metrizability of compact convex sets , 1970 .

[155]  SUBSPACES OF c0(N) AND LIPSCHITZ ISOMORPHISMS , 1999, math/9911016.

[156]  M. Fabian,et al.  Functional Analysis and Infinite-Dimensional Geometry , 2001 .

[157]  J. Orihuela,et al.  Kuratowski's Index of Non-Compactness and Renorming in Banach Spaces , 2004 .

[158]  M. Talagrand Espaces de Banach faiblement JC-analytiques , 1979 .

[159]  A. Grothendieck,et al.  Produits Tensoriels Topologiques Et Espaces Nucleaires , 1966 .

[160]  J. Lindenstrauss,et al.  Basic Concepts in the Geometry of Banach Spaces , 2001 .

[161]  Trees in Renorming Theory , 1995, math/9509217.

[162]  Distances to spaces of Baire one functions , 2009 .

[163]  E. Reznichenko,et al.  Separable subspaces of affine function spaces on convex compact sets , 2008 .

[164]  N. Tomczak-Jaegermann Banach spaces of typep have arbitrarily distortable subspaces , 1996 .

[165]  Banach spaces determined by their uniform structures , 1996, math/9701203.

[166]  S. Banach,et al.  Théorie des opérations linéaires , 1932 .

[167]  J. Lindenstrauss,et al.  Handbook of geometry of Banach spaces , 2001 .

[168]  J. Orihuela On T p -Locally Uniformly Rotund Norms , 2013 .

[169]  R. C. James Weakly compact sets , 1964 .

[170]  Universal spaces for strictly convex Banach Spaces , 2006 .

[171]  W. Moors AN ELEMENTARY PROOF OF JAMES’ CHARACTERIZATION OF WEAK COMPACTNESS , 2011, Bulletin of the Australian Mathematical Society.

[172]  I. Namioka,et al.  Separate continuity and joint continuity , 1974 .