A Biased View of Topology as a Tool in Functional Analysis
暂无分享,去创建一个
[1] F. Delbaen,et al. A class of specialLα spaces , 1980 .
[2] S. Argyros,et al. The cofinal property of the Reflexive Indecomposable Banach spaces , 2010, 1003.0870.
[3] F. Bombal,et al. Strictly Singular and Strictly Cosingular Operators on C(K, E) , 1989 .
[4] Chapter 24 - Ramsey Methods in Banach Spaces , 2003 .
[5] Ziqiu Yun,et al. Generalized Metric Spaces , 2016 .
[6] G. Choquet. Ensembles $K$-analytiques et $K$-sousliniens. Cas général et cas métrique , 1959 .
[7] S. Negrepontis. Banach Spaces and Topology , 1984 .
[8] G. Godefroy,et al. Subspaces of $ c_0 ({\Bbb N}) $ and Lipschitz isomorphisms , 2000 .
[9] J. Banaś,et al. Measures of noncompactness in Banach sequence spaces , 1992 .
[10] Petr Hájek,et al. Banach Space Theory , 2011 .
[11] G. Plebanek. A construction of a Banach space C(K) with few operators , 2004 .
[12] J. Jayne,et al. σ-Fragmentability of Multivalued Maps and Selection Theorems , 1993 .
[13] Matthew Tarbard. Hereditarily indecomposable, separable ℒ∞ Banach spaces with ℓ1 dual having few but not very few operators , 2012, J. Lond. Math. Soc..
[14] M. Valdivia,et al. A Nonlinear Transfer Technique for Renorming , 2008 .
[15] Sur le théorème du graphe fermé , 1966 .
[16] W. F. Eberlein. Weak Compactness in Banach Spaces: I. , 1947, Proceedings of the National Academy of Sciences of the United States of America.
[17] Christian Rosendal,et al. Banach spaces without minimal subspaces , 2007, 0711.1350.
[18] J. Orihuela,et al. Network characterization of Gul'ko compact spaces and their relatives☆ , 2004 .
[19] J. Orihuela,et al. A sequential property of set-valued maps , 1991 .
[20] V. Srivatsa. Baire class 1 selectors for upper semicontinuous set-valued maps , 1993 .
[21] J. Orihuela,et al. On compactness in locally convex spaces , 1987 .
[22] R. Haydon. Locally uniformly convex norms in Banach spaces and their duals , 2006, math/0610420.
[23] M. Raja. Locally uniformly rotund norms , 1999 .
[24] G. Jameson. Topology and Normed Spaces , 1974 .
[25] I. Namioka,et al. The Lindelöf property and fragmentability , 2000 .
[26] J. Orihuela,et al. Metrizability of precompact subsets in (LF)-spaces , 1986, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[27] S. Todorcevic,et al. Banach spaces and Ramsey Theory: some open problems , 2010, 1006.2668.
[28] M. Valdivia. Topics in Locally Convex Spaces , 1982 .
[29] A quantitative version of Krein's Theorem , 2005 .
[30] J. Orihuela. On Weakly Lindelöf Banach Spaces , 1992 .
[31] B. Cascales. OnK-analytic locally convex spaces , 1987 .
[32] Even infinite-dimensional real Banach spaces , 2007, 0704.1459.
[33] A criterion for the metrizability of a compact convex set in terms of the set of extreme points , 1972 .
[34] I. Namioka,et al. Banach Spaces and Topology (II) , 2003 .
[35] Asymptotic geometry of banach spaces and uniform quotient maps , 2012, 1209.0501.
[36] LUR renormings through Deville’s Master Lemma , 2009 .
[37] P. Kenderov,et al. Fragmentability and Sigma‐Fragmentability of Banach Spaces , 1999 .
[38] R. Cauty. Solution du problème de point fixe de Schauder , 2001 .
[39] A quantitative approach to weak compactness in Fréchet spaces and spaces C(X) , 2013 .
[40] V. Tkachuk. A space Cp(X) is dominated by irrationals if and only if it is K-analytic , 2005 .
[41] P. Enflo. On the invariant subspace problem for Banach spaces , 1987 .
[42] A hereditarily indecomposable $ {\mathcal{L}_{\infty}} $-space that solves the scalar-plus-compact problem , 2011 .
[43] J. Lindenstrauss,et al. Orlicz Sequence Spaces , 1977 .
[44] A quantitative version of James's Compactness Theorem , 2010, Proceedings of the Edinburgh Mathematical Society.
[45] S. Argyros,et al. Interpolating hereditarily indecomposable Banach spaces , 1997, math/9712277.
[46] C. Rogers,et al. σ-fragmentable Banach spaces , 1992 .
[47] Gilles Godefroy,et al. Chapter 18 – Renormings of Banach Spaces , 2001 .
[48] C. Bessaga,et al. Selected topics in infinite-dimensional topology , 1975 .
[49] Assaf Naor,et al. Metric cotype , 2005, SODA '06.
[50] H. H. Schaefer,et al. Topological Vector Spaces , 1967 .
[51] A coercive James’s weak compactness theorem and nonlinear variational problems , 2012 .
[52] A. Ostaszewski. TOPOLOGY AND BOREL STRUCTURE , 1976 .
[53] Distance to spaces of continuous functions , 2006 .
[54] T. Schlumprecht,et al. On the Richness of the Set of p’s in Krivine’s Theorem , 1995 .
[55] S. Ferrari,et al. Metrization theory and the Kadec property , 2016 .
[56] D. Fremlin,et al. Lindelöf modifications and K -analytic spaces , 1993 .
[57] D. H. Hyers. Linear topological spaces , 1945 .
[58] H. Rosenthal. A Characterization of Banach Spaces Containing l1 , 1974 .
[59] S. Argyros. On nonseparable Banach spaces , 1982 .
[60] Francisco Gallego Lupiáñez,et al. On Covering Properties , 1989 .
[61] V. Tkachuk,et al. Domination by second countable spaces and Lindelöf Σ-property , 2011 .
[62] M. Raja. Kadec norms and Borel sets in a Banach space , 1999 .
[63] P. Dodos. Banach Spaces and Descriptive Set Theory: Selected Topics , 2010 .
[64] I. Namioka. Radon-Nikodým Compacta , 2003 .
[65] Measure of weak noncompactness and real interpolation of operators , 2000, Bulletin of the Australian Mathematical Society.
[66] T. Schlumprecht. An arbitrarily distortable Banach space , 1991, math/9201225.
[67] Antonio Guarnieri,et al. WITH THE COLLABORATION OF , 2009 .
[68] Isometries on extremely non-complex Banach spaces , 2009, Journal of the Institute of Mathematics of Jussieu.
[69] G. Gruenhage. Covering properties on X2⧹Δ, W-sets, and compact subsets of Σ-products , 1984 .
[70] V. Fonf,et al. Boundaries of Asplund spaces , 2010 .
[71] Geometrical implications of the existence of very smooth bump functions in Banach spaces , 1989 .
[72] W. T. Gowers,et al. The unconditional basic sequence problem , 1992, math/9205204.
[73] L. Schwartz. Théorie des distributions , 1966 .
[74] G. Godefroy. Some Applications of Simons’ Inequality , 2000 .
[75] Seminorms related to weak compactness and to Tauberian operators , 1990 .
[76] J. Orihuela. On ${{\cal T}_{\!p}}$-Locally Uniformly Rotund Norms , 2013 .
[77] Spaces having a small diagonal , 1999, math/9910153.
[78] B. S. Tsirel'son. Not every Banach space contains an imbedding oflp or c0 , 1974 .
[79] J. Orihuela,et al. Locally uniformly rotund renorming and fragmentability , 1997 .
[80] I. Namioka. Fragmentability in banach spaces: Interaction of topologies , 2010 .
[81] W. Schachermayer,et al. Every Radon-Nikodym Corson compact space is Eberlein compact , 1991 .
[82] Gary Gruenhage,et al. Metrizable Spaces and Generalizations , 2002 .
[83] G. A. Edgar,et al. Topological properties of Banach spaces , 1984 .
[84] A. S. Granero,et al. Convexity and w*-compactness in Banach spaces , 2004 .
[85] Property (β) and uniform quotient maps , 2012 .
[86] P. Koszmider,et al. Extremely non-complex C(K) spaces , 2008, 0811.0577.
[87] J. E. Vaughan,et al. Encyclopedia of General Topology , 2004 .
[88] Richard J. Smith,et al. Renormings of C(K) spaces , 2010 .
[89] A. Kryczka. Quantitative approach to weak noncompactness in the polygon interpolation method , 2004 .
[90] S. Argyros,et al. Genericity and amalgamation of classes of Banach spaces , 2007 .
[91] S. Argyros,et al. Methods in the Theory of Hereditarily Indecomposable Banach Spaces , 2004 .
[92] B. Cascales,et al. A NEW LOOK AT COMPACTNESS VIA DISTANCES TO FUNCTION SPACES , 2008 .
[93] M. Canela. K-analytic locally convex spaces , 1982 .
[94] On classes of Banach spaces admitting "small" universal spaces , 2008, 0805.2043.
[95] K. Floret. Some Aspects of the Theory of Locally Convex Inductive Limits , 1980 .
[96] A. D. Arvanitakis. Some remarks on Radon-Nikodym compact spaces , 2002 .
[97] Inner characterizations of weakly compactly generated Banach spaces and their relatives , 2004 .
[98] Dentability indices with respect to measures of non-compactness , 2007 .
[99] On Locally Uniformly Rotund Renormings in C(K) Spaces , 2010, Canadian Journal of Mathematics.
[100] L. Oncina. A new characterization of Eberlein compacta , 2001 .
[101] Per Enflo,et al. A counterexample to the approximation problem in Banach spaces , 1973 .
[102] S. Argyros,et al. A hereditarily indecomposable L_\infty-space that solves the scalar-plus-compact problem , 2009, 0903.3921.
[103] Stanisław Prus,et al. Measure of weak noncompactness under complex interpolation , 2001 .
[104] Property $(\beta)$ and uniform quotient maps , 2010, 1010.0184.
[105] P. Koszmider. Banach spaces of continuous functions with few operators , 2004 .
[106] P. Koszmider. A survey on Banach spaces C(K) with few operators , 2010 .
[107] C. Rogers,et al. σ-fragmented Banach spaces II , 1994 .
[108] Stefan Heinrich,et al. Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces , 1982 .
[109] A. Grothendieck. Criteres de Compacite dans les Espaces Fonctionnels Generaux , 1952 .
[110] A. S. Granero. An extension of the Krein-Smulian theorem. , 2006 .
[111] V. I. Lomonosov,et al. Invariant subspaces for the family of operators which commute with a completely continuous operator , 1973 .
[112] Richard Smith,et al. Strictly convex norms and topology , 2010, 1012.5595.
[113] M. Valdivia,et al. On Weakly Locally Uniformly Rotund Banach Spaces , 1999 .
[114] J. Orihuela,et al. James boundaries and σ-fragmented selectors , 2008 .
[115] An infinite Ramsey theorem and some Banach-space dichotomies , 2002, math/0501105.
[116] M. Fabian,et al. Gâteaux differentiability of convex functions and topology : weak asplund spaces , 1997 .
[117] M. López-Pellicer,et al. Descriptive Topology in Selected Topics of Functional Analysis , 2011 .
[118] Aleksandr Vladimirovich Arkhangelʹskiĭ. Topological function spaces , 1992 .
[119] M. Raja. On dual locally uniformly rotund norms , 2002 .
[120] Lebesgue property for convex risk measures on Orlicz spaces , 2012 .
[121] G. Androulakis,et al. Strictly Singular, Non‐Compact Operators Exist on the Space of Gowers and Maurey , 2001, math/0102008.
[122] Richard L. Lenz,et al. The Lindelf property in Banach spaces , 2003 .
[123] R. Cauty. Un espace métrique linéaire qui n'est pas un rétracte absolu , 1994 .
[124] Descriptive Set Theory and the Geometry of Banach Spaces , 2009 .
[125] O. Kalenda. Valdivia compact spaces in topology and Banach space theory. , 2000 .
[126] P. Koszmider,et al. A continuous image of a Radon-Nikod\'ym compact which is not Radon-Nikod\'{y}m , 2011, 1112.4152.
[127] W. Szlenk,et al. The non-existence of a separable reflexive Banach space universal for all separable reflexive Banach spaces , 1968 .
[128] E. Michael. Continuous Selections. I , 1956 .
[129] Bernardo Cascales,et al. The quantitative difference between countable compactness and compactness , 2008 .
[130] J. Orihuela. Pointwise Compactness in Spaces of Continuous Functions , 1987 .
[131] J. Orihuela,et al. The number of K-determination of topological spaces , 2012 .
[132] Analytic sets of Banach spaces , 2010 .
[133] Yun-Su Kim. A Solution to the Invariant Subspace Problem , 2009 .
[134] G. Gruenhage. A NOTE ON GUL'KO COMPACT SPACES , 1987 .
[135] A. Martinón. MEASURES OF WEAK NONCOMPACTNESS IN BANACH SEQUENCE SPACES , 2022 .
[136] M. R. Galán,et al. Compactness, Optimality, and Risk , 2013 .
[137] P. Koszmider. A C(K) Banach space which does not have the Schroeder-Bernstein property , 2011, 1106.2917.
[138] J. Christensen. Topology and Borel structure : descriptive topology and set theory with applications to functional analysis and measure theory , 1974 .
[139] S. Semmes. Topological Vector Spaces , 2003 .
[140] J. Lindenstrauss,et al. Geometric Nonlinear Functional Analysis , 1999 .
[141] R. D. Bourgin,et al. Geometric Aspects of Convex Sets with the Radon-Nikodym Property , 1983 .
[142] A. S. Granero,et al. The class of universally Krein–Šmulian Banach spaces , 2007 .
[143] E. A. Reznichenko. Convex compact spaces and their maps , 1990 .
[144] R. Hansell. DESCRIPTIVE SETS AND THE TOPOLOGY OF NONSEPARABLE BANACH SPACES , 2001 .
[145] On unconditionally saturated Banach spaces , 2008, 0805.2046.
[146] A coding of separable Banach spaces. Analytic and coanalytic families of Banach spaces , 2002 .
[147] R. DeVille,et al. Smoothness and renormings in Banach spaces , 1993 .
[148] B. Cascales,et al. Measures of weak noncompactness in Banach spaces , 2009 .
[149] Michael A. Coco. Biorthogonal systems in Banach spaces , 2003 .
[150] J. Diestel. Sequences and series in Banach spaces , 1984 .
[151] M. Raja. Weak∗ locally uniformly rotund norms and descriptive compact spaces , 2003 .
[152] Richard J. Smith. Strictly convex norms, _{}-diagonals and non-Gruenhage spaces , 2012 .
[153] Karin Rothschild,et al. A Course In Functional Analysis , 2016 .
[154] H. Corson. Metrizability of compact convex sets , 1970 .
[155] SUBSPACES OF c0(N) AND LIPSCHITZ ISOMORPHISMS , 1999, math/9911016.
[156] M. Fabian,et al. Functional Analysis and Infinite-Dimensional Geometry , 2001 .
[157] J. Orihuela,et al. Kuratowski's Index of Non-Compactness and Renorming in Banach Spaces , 2004 .
[158] M. Talagrand. Espaces de Banach faiblement JC-analytiques , 1979 .
[159] A. Grothendieck,et al. Produits Tensoriels Topologiques Et Espaces Nucleaires , 1966 .
[160] J. Lindenstrauss,et al. Basic Concepts in the Geometry of Banach Spaces , 2001 .
[161] Trees in Renorming Theory , 1995, math/9509217.
[162] Distances to spaces of Baire one functions , 2009 .
[163] E. Reznichenko,et al. Separable subspaces of affine function spaces on convex compact sets , 2008 .
[164] N. Tomczak-Jaegermann. Banach spaces of typep have arbitrarily distortable subspaces , 1996 .
[165] Banach spaces determined by their uniform structures , 1996, math/9701203.
[166] S. Banach,et al. Théorie des opérations linéaires , 1932 .
[167] J. Lindenstrauss,et al. Handbook of geometry of Banach spaces , 2001 .
[168] J. Orihuela. On T p -Locally Uniformly Rotund Norms , 2013 .
[169] R. C. James. Weakly compact sets , 1964 .
[170] Universal spaces for strictly convex Banach Spaces , 2006 .
[171] W. Moors. AN ELEMENTARY PROOF OF JAMES’ CHARACTERIZATION OF WEAK COMPACTNESS , 2011, Bulletin of the Australian Mathematical Society.
[172] I. Namioka,et al. Separate continuity and joint continuity , 1974 .