Estimation of induction motor parameters using shuffled frog-leaping algorithm

Abstract This paper introduces a shuffled frog-leaping algorithm based method to approximate the equivalent circuit parameters of induction machines from the manufacturer data, such as nameplate data and motor performance characteristics. The steady-state equivalent circuit is applied for the simulations. The circuit parameters are found as the result for the error minimization function between the estimated and maker data. The suggested algorithm solves the parameter estimation problem and surpasses the solutions reached by differential evolution, particle swarm optimization and genetic algorithms. Therefore, this algorithm can be employed in motor energy management system for bettering the overall energy savings in industry.

[1]  Y. Koubaa Application of least-squares techniques for induction motor parameters estimation , 2006 .

[2]  Nicolás Ruiz-Reyes,et al.  Evaluation of a Particle Swarm Optimization Based Method for Optimal Location of Photovoltaic Grid-connected Systems , 2010 .

[3]  J. Pedra,et al.  Estimation of induction motor double-cage model parameters from manufacturer data , 2004, IEEE Transactions on Energy Conversion.

[4]  Francisco Jurado,et al.  Binary Particle Swarm Optimization for Optimization of Photovoltaic Generators in Radial Distribution Systems Using Probabilistic Load Flow , 2011 .

[5]  Vahid Rashtchi,et al.  Parameter identification of deep-bar induction motors using genetic algorithm , 2007 .

[6]  Benbouzid The HG Diagram Model for Induction Motors Analysis: Theoretical Approach and Applications , 2003 .

[7]  Taher Niknam,et al.  A new hybrid algorithm for optimal power flow considering prohibited zones and valve point effect , 2012 .

[8]  M. Marchesoni,et al.  Implementation of a Mixed Recursive Least-squares and Kalman Filter Approach in Parameters, Flux, and Speed Estimation for Vector-controlled Induction Motor Drives , 2008 .

[9]  Taher Niknam,et al.  A new tribe modified shuffled frog leaping algorithm for multi‐objective distribution feeder reconfiguration considering distributed generator units , 2012 .

[10]  P. Kundur,et al.  An induction motor parameter estimation method , 2001 .

[11]  Francisco Jurado,et al.  Optimization of biomass fuelled systems for distributed power generation using Particle Swarm Optimization , 2008 .

[12]  Francisco Jurado,et al.  Optimization of distributed generation systems using a new discrete PSO and OPF , 2012 .

[13]  K. S. Huang,et al.  Parameter Identification for FOC Induction Motors Using Genetic Algorithms with Improved Mathematical Model , 2001 .

[14]  Francesco Alonge,et al.  Parameter identification of induction motor model using genetic algorithms , 1998 .

[15]  Mohamed A. Awadallah,et al.  Parameter Estimation of Induction Machines from Nameplate Data Using Particle Swarm Optimization and Genetic Algorithm Techniques , 2008 .

[16]  Srikrishna Subramanian,et al.  Bacterial Foraging Technique Based Parameter Estimation of Induction Motor from Manufacturer Data , 2010 .

[17]  Muzaffar Eusuff,et al.  Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization , 2006 .

[18]  P. Vadstrup,et al.  Parameter identification of induction motors using differential evolution , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[19]  Taher Niknam,et al.  A modified shuffle frog leaping algorithm for multi-objective optimal power flow , 2011 .

[20]  Taher Niknam,et al.  A new evolutionary algorithm for non-linear economic dispatch , 2011, Expert Syst. Appl..

[21]  R. Bhuvaneswari,et al.  Multi-objective parameter estimation of induction motor using particle swarm optimization , 2010, Eng. Appl. Artif. Intell..

[22]  M.H. Haque Determination of NEMA Design Induction Motor Parameters From Manufacturer Data , 2008, IEEE Transactions on Energy Conversion.

[23]  Taher Niknam,et al.  Probabilistic approach to multi-objective Volt/Var control of distribution system considering hybrid fuel cell and wind energy sources using Improved Shuffled Frog Leaping Algorithm , 2012 .

[24]  Taher Niknam,et al.  An efficient multi‐objective modified shuffled frog leaping algorithm for distribution feeder reconfiguration problem , 2011 .

[25]  Scott D. Sudhoff,et al.  Analysis of Electric Machinery and Drive Systems , 1995 .