Cytoarchitecture, probability maps and functions of the human frontal pole

The frontal pole has more expanded than any other part in the human brain as compared to our ancestors. It plays an important role for specifically human behavior and cognitive abilities, e.g. action selection (Kovach et al., 2012). Evidence about divergent functions of its medial and lateral part has been provided, both in the healthy brain and in psychiatric disorders. The anatomical correlates of such functional segregation, however, are still unknown due to a lack of stereotaxic, microstructural maps obtained in a representative sample of brains. Here we show that the human frontopolar cortex consists of two cytoarchitectonically and functionally distinct areas: lateral frontopolar area 1 (Fp1) and medial frontopolar area 2 (Fp2). Based on observer-independent mapping in serial, cell-body stained sections of 10 brains, three-dimensional, probabilistic maps of areas Fp1 and Fp2 were created. They show, for each position of the reference space, the probability with which each area was found in a particular voxel. Applying these maps as seed regions for a meta-analysis revealed that Fp1 and Fp2 differentially contribute to functional networks: Fp1 was involved in cognition, working memory and perception, whereas Fp2 was part of brain networks underlying affective processing and social cognition. The present study thus disclosed cortical correlates of a functional segregation of the human frontopolar cortex. The probabilistic maps provide a sound anatomical basis for interpreting neuroimaging data in the living human brain, and open new perspectives for analyzing structure-function relationships in the prefrontal cortex. The new data will also serve as a starting point for further comparative studies between human and non-human primate brains. This allows finding similarities and differences in the organizational principles of the frontal lobe during evolution as neurobiological basis for our behavior and cognitive abilities.

[1]  K. Zilles,et al.  Coordinate‐based activation likelihood estimation meta‐analysis of neuroimaging data: A random‐effects approach based on empirical estimates of spatial uncertainty , 2009, Human brain mapping.

[2]  Jordan Grafman,et al.  Damage to the Fronto-Polar Cortex Is Associated with Impaired Multitasking , 2008, PloS one.

[3]  J. Price,et al.  Architectonic subdivision of the human orbital and medial prefrontal cortex , 2003, The Journal of comparative neurology.

[4]  W. Dixon,et al.  BMDP statistical software , 1983 .

[5]  Alan C. Evans,et al.  Probabilistic cytoarchitectonic maps transformed into MNI space , 2003 .

[6]  Karl Zilles,et al.  Elastische Anpassung in der digitalen Bildverarbeitung auf mehreren Auflösungsstufen mit Hilfe von Mehrgitterverfahren , 1997, DAGM-Symposium.

[7]  G. Smith,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. , 1927 .

[8]  M. Petrides,et al.  Architectonic mapping of the medial region of the human orbitofrontal cortex by density profiles , 2009, Neuroscience.

[9]  Koos de Vos,et al.  3-D Cytoarchitectonic parcellation of human orbitofrontal cortex Correlation with postmortem MRI , 2010, Psychiatry Research: Neuroimaging.

[10]  Simon B. Eickhoff,et al.  Analysis of neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space—The roles of Brodmann areas 44 and 45 , 2004, NeuroImage.

[11]  M. Hallett,et al.  Modeling other minds , 1995, Neuroreport.

[12]  Richard S. J. Frackowiak,et al.  Other minds in the brain: a functional imaging study of “theory of mind” in story comprehension , 1995, Cognition.

[13]  Katrin Amunts,et al.  Gender-Specific Left–Right Asymmetries in Human Visual Cortex , 2007, The Journal of Neuroscience.

[14]  K. Amunts,et al.  Brodmann's Areas 17 and 18 Brought into Stereotaxic Space—Where and How Variable? , 2000, NeuroImage.

[15]  A. Schleicher,et al.  Areas 3a, 3b, and 1 of Human Primary Somatosensory Cortex 1. Microstructural Organization and Interindividual Variability , 1999, NeuroImage.

[16]  P S Goldman-Rakic,et al.  Cytoarchitectonic definition of prefrontal areas in the normal human cortex: I. Remapping of areas 9 and 46 using quantitative criteria. , 1995, Cerebral cortex.

[17]  B. Jacobs,et al.  Life‐span dendritic and spine changes in areas 10 and 18 of human cortex: A quantitative golgi study , 1997, The Journal of comparative neurology.

[18]  P. McLeod,et al.  Measuring the mind speed, control, and age , 2005 .

[19]  Simon B. Eickhoff,et al.  Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps , 2006, NeuroImage.

[20]  Katrin Amunts,et al.  Cortical Folding Patterns and Predicting Cytoarchitecture , 2007, Cerebral cortex.

[21]  Iroise Dumontheil,et al.  The gateway hypothesis of rostral prefrontal cortex (area 10) function , 2007, Trends in Cognitive Sciences.

[22]  J. Mazziotta,et al.  Brain Mapping: The Methods , 2002 .

[23]  F. Mansilla,et al.  The Human Parahippocampal Region: I. Temporal Pole Cytoarchitectonic and MRI Correlation , 2010, Cerebral cortex.

[24]  I. Aharon,et al.  Three‐dimensional mapping of cortical thickness using Laplace's Equation , 2000, Human brain mapping.

[25]  H. J. G. GUNDERSEN,et al.  Some new, simple and efficient stereological methods and their use in pathological research and diagnosis , 1988, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[26]  Christopher K. Kovach,et al.  Anterior Prefrontal Cortex Contributes to Action Selection through Tracking of Recent Reward Trends , 2012, The Journal of Neuroscience.

[27]  Nadim Joni Shah,et al.  Minds Made for Sharing: Initiating Joint Attention Recruits Reward-related Neurocircuitry , 2010, Journal of Cognitive Neuroscience.

[28]  P. Morosan,et al.  Observer-Independent Method for Microstructural Parcellation of Cerebral Cortex: A Quantitative Approach to Cytoarchitectonics , 1999, NeuroImage.

[29]  Katrin Amunts,et al.  Architecture of the Cerebral Cortex , 2012 .

[30]  Joseph E LeDoux,et al.  Contributions of the Amygdala to Emotion Processing: From Animal Models to Human Behavior , 2005, Neuron.

[31]  Patrick R Hof,et al.  Neuropil distribution in the cerebral cortex differs between humans and chimpanzees , 2012, The Journal of comparative neurology.

[32]  Karl Zilles,et al.  Estimation of volume fractions in nervous tissue with an image analyzer , 1982, Journal of Neuroscience Methods.

[33]  K. Amunts,et al.  Centenary of Brodmann's Map — Conception and Fate , 2022 .

[34]  C. Frith,et al.  Meeting of minds: the medial frontal cortex and social cognition , 2006, Nature Reviews Neuroscience.

[35]  Jason P. Mitchell,et al.  Distinct neural systems subserve person and object knowledge , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Kathryn M. McMillan,et al.  N‐back working memory paradigm: A meta‐analysis of normative functional neuroimaging studies , 2005, Human brain mapping.

[37]  S. Wise,et al.  Frontal pole cortex: encoding ends at the end of the endbrain , 2011, Trends in Cognitive Sciences.

[38]  A. Schleicher,et al.  Broca's region revisited: Cytoarchitecture and intersubject variability , 1999, The Journal of comparative neurology.

[39]  Simon B. Eickhoff,et al.  Analysis of neurotransmitter receptor distribution patterns in the cerebral cortex , 2007, NeuroImage.

[40]  Alan C. Evans,et al.  Anatomical mapping of functional activation in stereotactic coordinate space , 1992, NeuroImage.

[41]  K. Amunts,et al.  Spatial organization of neurons in the frontal pole sets humans apart from great apes. , 2011, Cerebral cortex.

[42]  K. Amunts,et al.  Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps , 2005, Anatomy and Embryology.

[43]  S. Scott,et al.  The role of the rostral frontal cortex (area 10) in prospective memory: a lateral versus medial dissociation , 2003, Neuropsychologia.

[44]  C. N. Macrae,et al.  Finding the Self? An Event-Related fMRI Study , 2002, Journal of Cognitive Neuroscience.

[45]  Bruce R. Rosen,et al.  Predicting the location of entorhinal cortex from MRI , 2009, NeuroImage.

[46]  K. Amunts,et al.  Advances in cytoarchitectonic mapping of the human cerebral cortex. , 2001, Neuroimaging clinics of North America.

[47]  Stephen Lawrie,et al.  Functional Specialization within Rostral Prefrontal Cortex (Area 10): A Meta-analysis , 2006, Journal of Cognitive Neuroscience.

[48]  Paul W. Burgess,et al.  Distinct functional connectivity associated with lateral versus medial rostral prefrontal cortex: A meta-analysis , 2010, NeuroImage.

[49]  K. Amunts,et al.  Probabilistic maps, morphometry, and variability of cytoarchitectonic areas in the human superior parietal cortex. , 2008, Cerebral cortex.

[50]  Calyampudi R. Rao,et al.  Anthropometric survey of the United Provinces, 1941: a statistical study. , 1949 .

[51]  R. Turner,et al.  Microstructural Parcellation of the Human Cerebral Cortex: From Brodmann's Post-Mortem Map to in Vivo Mapping with High-Field Magnetic Resonance Imaging , 2013 .

[52]  J. Fuster Prefrontal Cortex , 2018 .

[53]  A. Schleicher,et al.  Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/MT+: a probabilistic, stereotaxic map of area hOc5. , 2006, Cerebral cortex.

[54]  J. Morrison,et al.  Human orbitofrontal cortex: Cytoarchitecture and quantitative immunohistochemical parcellation , 1995, The Journal of comparative neurology.

[55]  Angela M. Uecker,et al.  ALE meta‐analysis: Controlling the false discovery rate and performing statistical contrasts , 2005, Human brain mapping.

[56]  K. Amunts,et al.  The human inferior parietal lobule in stereotaxic space , 2008, Brain Structure and Function.

[57]  Lawrence L. Wald,et al.  Accurate prediction of V1 location from cortical folds in a surface coordinate system , 2008, NeuroImage.

[58]  C. Frith,et al.  Distinct regions of medial rostral prefrontal cortex supporting social and nonsocial functions. , 2007, Social cognitive and affective neuroscience.

[59]  A. Schleicher,et al.  Two different areas within the primary motor cortex of man , 1996, Nature.

[60]  K. Amunts,et al.  The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results. , 2006, Cerebral cortex.

[61]  Timothy Edward John Behrens,et al.  Relating connectional architecture to grey matter function using diffusion imaging , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[62]  B. Merker Silver staining of cell bodies by means of physical development , 1983, Journal of Neuroscience Methods.

[63]  S. B. Eickhoff,et al.  Quantitative architectural analysis: a new approach to cortical mapping , 2005, Anatomy and Embryology.

[64]  K Amunts,et al.  A stereological approach to human cortical architecture: identification and delineation of cortical areas , 2000, Journal of Chemical Neuroanatomy.

[65]  J. Fuster Frontal lobe and cognitive development , 2002, Journal of neurocytology.

[66]  G. V. Van Hoesen,et al.  Prefrontal cortex in humans and apes: a comparative study of area 10. , 2001, American journal of physical anthropology.

[67]  P. Morosan,et al.  Human Primary Auditory Cortex: Cytoarchitectonic Subdivisions and Mapping into a Spatial Reference System , 2001, NeuroImage.

[68]  Angela R. Laird,et al.  Activation likelihood estimation meta-analysis revisited , 2012, NeuroImage.

[69]  F. Wingert,et al.  Computeranwendungen bei Wachstumsproblemen in Biologie und Medizin , 1971 .

[70]  Stephanie Spengler,et al.  Differential functions of lateral and medial rostral prefrontal cortex (area 10) revealed by brain-behavior associations. , 2005, Cerebral cortex.

[71]  Jonas Persson,et al.  Common prefrontal activations during working memory, episodic memory, and semantic memory , 2003, Neuropsychologia.

[72]  A. McDonald Cortical pathways to the mammalian amygdala , 1998, Progress in Neurobiology.

[73]  Sterling C. Johnson,et al.  Neural correlates of self-reflection. , 2002, Brain : a journal of neurology.

[74]  Lars Hömke,et al.  A multigrid method for anisotropic PDEs in elastic image registration , 2006, Numer. Linear Algebra Appl..

[75]  P. Goldman-Rakic,et al.  Cytoarchitectonic definition of prefrontal areas in the normal human cortex: II. Variability in locations of areas 9 and 46 and relationship to the Talairach Coordinate System. , 1995, Cerebral cortex.

[76]  K. Zilles,et al.  Areas 3a, 3b, and 1 of Human Primary Somatosensory Cortex 2. Spatial Normalization to Standard Anatomical Space , 2000, NeuroImage.

[77]  T. Shallice Specific impairments of planning. , 1982, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[78]  K. Zilles,et al.  Human Somatosensory Area 2: Observer-Independent Cytoarchitectonic Mapping, Interindividual Variability, and Population Map , 2001, NeuroImage.

[79]  A. Owen,et al.  Anterior prefrontal cortex: insights into function from anatomy and neuroimaging , 2004, Nature Reviews Neuroscience.

[80]  Simon B. Eickhoff,et al.  A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data , 2005, NeuroImage.

[81]  Paul W. Burgess,et al.  Specialization of the Rostral Prefrontal Cortex for Distinct Analogy Processes , 2010, Cerebral cortex.

[82]  Timothy Edward John Behrens,et al.  Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[83]  A. Schleicher,et al.  21 – Quantitative Analysis of Cyto- and Receptor Architecture of the Human Brain , 2002 .

[84]  Guinevere F. Eden,et al.  Meta-Analysis of the Functional Neuroanatomy of Single-Word Reading: Method and Validation , 2002, NeuroImage.

[85]  Stefan Geyer,et al.  Prologue: Toward the Concept of a Cortical Control of Voluntary Movements , 2004 .

[86]  J. Jacobs,et al.  Regional dendritic and spine variation in human cerebral cortex: a quantitative golgi study. , 2001, Cerebral cortex.

[87]  C. Neil Macrae,et al.  General and specific contributions of the medial prefrontal cortex to knowledge about mental states , 2005, NeuroImage.

[88]  E. Koechlin,et al.  The role of the anterior prefrontal cortex in human cognition , 1999, Nature.

[89]  U. Asendorf,et al.  3.a–e , 1998 .

[90]  C. Frith,et al.  Brain regions involved in prospective memory as determined by positron emission tomography , 2001, Neuropsychologia.

[91]  B. Vogt,et al.  Human cingulate cortex: Surface features, flat maps, and cytoarchitecture , 1995, The Journal of comparative neurology.

[92]  D. V. van Essen,et al.  Mapping Human Cortical Areas In Vivo Based on Myelin Content as Revealed by T1- and T2-Weighted MRI , 2011, The Journal of Neuroscience.

[93]  Katrin Amunts,et al.  Locating the functional and anatomical boundaries of human primary visual cortex , 2009, NeuroImage.

[94]  J. Grafman,et al.  ROLE OF THE RIGHT PREFRONTAL CORTEX IN ILL-STRUCTURED PLANNING , 2000, Cognitive neuropsychology.

[95]  JORDAN GRAFMAN,et al.  Similarities and Distinctions among Current Models of Prefrontal Cortical Functions , 1995, Annals of the New York Academy of Sciences.

[96]  Dr. Stefan Geyer The Microstructural Border Between the Motor and the Cognitive Domain in the Human Cerebral Cortex , 2004, Advances in Anatomy Embryology and Cell Biology.

[97]  Karl Zilles,et al.  Cytology and receptor architecture of human anterior cingulate cortex , 2008, The Journal of comparative neurology.

[98]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[99]  J. Power,et al.  The amygdaloid complex: anatomy and physiology. , 2003, Physiological reviews.

[100]  J. Harlow Passage of an Iron Rod Through the Head , 1999 .

[101]  Katrin Amunts,et al.  The human inferior parietal cortex: Cytoarchitectonic parcellation and interindividual variability , 2006, NeuroImage.

[102]  Uta Frith,et al.  Theory of mind , 2001, Current Biology.

[103]  K Zilles,et al.  A quantitative approach to cytoarchitectonics: Analysis of structural inhomogeneities in nervous tissue using an image analyser , 1990, Journal of microscopy.

[104]  P. Fox,et al.  Mapping context and content: the BrainMap model , 2002, Nature Reviews Neuroscience.