Bose-Einstein Condensate Dark Matter Halos confronted with galactic observations

We present a comparative confrontation of both the Bose-Einstein Condensate (BEC) and the Navarro-Frenk-White (NFW) dark halo models with galactic rotation curves and velocity dispersion data. We conclude that the BEC model fits better the dwarf galaxy dark matter distribution, but suffers from sharp cut-off in larger galaxies, where the NFW model performs better. In more detail, we employ 6 High Surface Brightness (HSB), 6 Low Surface Brightness (LSB) and 7 dwarf galaxies with rotation curves falling into two classes, based on their shapes. In the first class the rotational velocities increase with radius over the whole observed range, the BEC and NFW models giving comparable fits for both HSB and LSB galaxies, while significantly improving over the NFW fit for dwarf galaxies. This improvement is due to the central density cusp avoidance property of the BEC model. The rotational velocity of HSB and LSB galaxies falling into the second class exhibit long flat plateaus, resulting in a better fit of the NFW model for HSB galaxies, and comparable fits for LSB galaxies. The weaker performance of the BEC model for the HSB type II galaxies is due to the BEC density profiles dropping rapidly to zero outside a nearly constant density core. Finally we confront both models with the projected velocity dispersion profiles of 6 Virgo cluster galaxies, which after a steep rising, remain flat over the sampled region. The two models gave comparable combined $\tilde{\chi}_{\min}^{2}$ values for these galaxies but both model fits remained outside the 3$\sigma$ confidence level, pointing out the need for a better modelling of the velocity dispersion of galaxies that both the BEC and NFW models could provide.

[1]  F. V. Massoli,et al.  XENON100 dark matter results from a combination of 477 live days , 2016, 1609.06154.

[2]  P. Frampton Angular Momentum of Dark Matter Black Holes , 2016, 1608.05009.

[3]  Pengwei Xie,et al.  Dark Matter Results from First 98.7 Days of Data from the PandaX-II Experiment. , 2016, Physical review letters.

[4]  K. Ghosh,et al.  Bounds on universal extra dimension from LHC run I and II data , 2016, 1606.04084.

[5]  S. Ter-Antonyan,et al.  Searches for Sterile Neutrinos with the IceCube Detector. , 2016, Physical review letters.

[6]  D. Reitze The Observation of Gravitational Waves from a Binary Black Hole Merger , 2016 .

[7]  Takahiro Tanaka,et al.  Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. , 2016, Physical review letters.

[8]  E. Conover Physicists narrow in on electrical short in Large Hadron Collider , 2015 .

[9]  L. Rosenberg Dark-matter QCD-axion searches , 2015, Proceedings of the National Academy of Sciences.

[10]  T. Harko Gravitational collapse of Bose-Einstein condensate dark matter halos , 2014, 1403.3358.

[11]  L. Gergely,et al.  Effective field theory of modified gravity with two scalar fields: dark energy and dark matter , 2014, 1402.0553.

[12]  M. Pires,et al.  Discussion on the energy content of the galactic dark matter Bose-Einstein condensate halo in the Thomas-Fermi approximation , 2014, 1401.6142.

[13]  L. Gergely,et al.  Rotation curves in Bose-Einstein Condensate Dark Matter Halos , 2013, 1312.3715.

[14]  R. Webb,et al.  First results from the LUX dark matter experiment at the Sanford underground research facility. , 2013, Physical review letters.

[15]  L. Roszkowski,et al.  Dark matter and collider signatures of the MSSM , 2013, 1306.1567.

[16]  C. A. Oxborrow,et al.  Planck 2015 results. I. Overview of products and scientific results , 2015 .

[17]  S. Capozziello,et al.  Galaxy rotation curves in f(R,ϕ) gravity , 2013, 1302.1760.

[18]  Jing Liu,et al.  Cosmological constraints on variable warm dark matter , 2013, 1302.0643.

[19]  N. Ouellette The Dynamical Properties of Virgo Cluster Galaxies , 2013 .

[20]  O. Valenzuela,et al.  Hints on halo evolution in scalar field dark matter models with galaxy observations , 2012, 1211.6431.

[21]  Michael J. Williams,et al.  MEASURING DARK MATTER PROFILES NON-PARAMETRICALLY IN DWARF SPHEROIDALS: AN APPLICATION TO DRACO , 2012, 1211.5376.

[22]  M. Pires,et al.  Galactic cold dark matter as a Bose-Einstein condensate of WISPs , 2012, 1208.0301.

[23]  T. Matos,et al.  EXACT SOLUTION TO FINITE TEMPERATURE SFDM: NATURAL CORES WITHOUT FEEDBACK , 2012, 1207.5858.

[24]  R. Teyssier,et al.  Cusp-core transformations in dwarf galaxies: observational predictions , 2012, 1206.4895.

[25]  T. Matos,et al.  Flat central density profile and constant dark matter surface density in galaxies from scalar field dark matter , 2012, 1201.3032.

[26]  D. Lyapustin The Axion Dark Matter eXperiment , 2011, 1112.1167.

[27]  H. Velten,et al.  Power spectrum for the Bose-Einstein condensate dark matter , 2011, 1111.2032.

[28]  Eniko J. M. Madarassy,et al.  Finite temperature effects in Bose-Einstein condensed dark matter halos , 2011, 1110.2829.

[29]  H. Vega,et al.  Warm dark matter in the galaxies:theoretical and observational progresses. Highlights and conclusions of the Chalonge Meudon workshop 2011 , 2011, 1109.3187.

[30]  N. Zinner Vortex Structures in a Rotating BEC Dark Matter Component , 2011, 1108.4290.

[31]  T. Saitoh,et al.  Cores and revived cusps of dark matter haloes in disc galaxy formation through clump clusters , 2011, 1108.0906.

[32]  T. Harko Cosmological dynamics of dark matter Bose-Einstein condensation , 2011, 1105.5189.

[33]  T. Harko,et al.  Galactic rotation curves in brane world models , 2011, 1105.0159.

[34]  S. McGaugh,et al.  LOCAL GROUP DWARF SPHEROIDALS: CORRELATED DEVIATIONS FROM THE BARYONIC TULLY–FISHER RELATION , 2010, 1003.3448.

[35]  T. Matos,et al.  ULTRA LIGHT BOSONIC DARK MATTER AND COSMIC MICROWAVE BACKGROUND , 2009, 0908.0054.

[36]  M. Kutschera,et al.  Global disk model for galaxies NGC 1365, NGC 6946, NGC 7793, UGC 6446 , 2009, 0906.4448.

[37]  A. Pelster,et al.  CRITICAL TEMPERATURE OF A BOSE-EINSTEIN CONDENSATE WITH 1/r INTERACTIONS , 2008 .

[38]  Jae-weon Lee,et al.  BEC dark matter can explain collisions of galaxy clusters , 2008, 0805.3827.

[39]  A. DeBenedictis,et al.  Galactic rotation curves and brane-world models , 2008, 0802.3453.

[40]  D. Boyanovsky,et al.  Constraints on dark matter particles from theory, galaxy observations and N-body simulations , 2007, 0710.5180.

[41]  C. Boehmer,et al.  Dark matter as a geometric effect in f(R) gravity , 2007, 0709.0046.

[42]  J. Moffat,et al.  Testing Modified Gravity with Globular Cluster Velocity Dispersions , 2007, 0708.1935.

[43]  F. Prada,et al.  TESTING GRAVITY WITH MOTION OF SATELLITES AROUND GALAXIES: NEWTONIAN GRAVITY AGAINST MODIFIED NEWTONIAN DYNAMICS , 2007, 0706.3554.

[44]  Sandro Stringari,et al.  Theory of ultracold atomic Fermi gases , 2007, 0706.3360.

[45]  C. Boehmer,et al.  Can dark matter be a Bose–Einstein condensate? , 2007, 0705.4158.

[46]  C. Boehmer,et al.  On Einstein clusters as galactic dark matter haloes , 2007, 0705.1756.

[47]  C. Boehmer,et al.  Extra force in f(R) modified theories of gravity , 2007, 0704.1733.

[48]  H. Kleinert,et al.  Critical temperature of weakly interacting dipolar condensates. , 2006, Physical review letters.

[49]  S. Capozziello,et al.  Low surface brightness galaxy rotation curves in the low energy limit of Rn gravity: no need for dark matter? , 2006, astro-ph/0603522.

[50]  P. Biermann,et al.  Relic keV sterile neutrinos and reionization. , 2005, Physical review letters.

[51]  G. Stinson,et al.  Is There Evidence for Flat Cores in the Halos of Dwarf Galaxies? The Case of NGC 3109 and NGC 6822 , 2005, astro-ph/0509644.

[52]  A. Kong,et al.  Dwarf Galaxies of the Local Group , 2005, Proceedings of the International Astronomical Union.

[53]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[54]  Edinburgh,et al.  Simulating the joint evolution of quasars, galaxies and their large-scale distribution , 2005, astro-ph/0504097.

[55]  T. Harko,et al.  Can the galactic rotation curves be explained in brane world models , 2004, gr-qc/0404104.

[56]  W. K. Huchtmeier,et al.  A Catalog of Neighboring Galaxies , 2004 .

[57]  T. Padmanabhan Cosmological constant—the weight of the vacuum , 2002, hep-th/0212290.

[58]  Mark D.Roberts Galactic Metrics , 2002, astro-ph/0209456.

[59]  M. Morgan,et al.  Vortices in a rotating dark matter condensate , 2002 .

[60]  P. Peebles,et al.  The Cosmological Constant and Dark Energy , 2002, astro-ph/0207347.

[61]  X. Wang Cold Bose stars: Self-gravitating Bose-Einstein condensates , 2001 .

[62]  V. Rubin,et al.  High-resolution rotation curves of low surface brightness galaxies , 2002, astro-ph/0201276.

[63]  E. D. Blok Low Surface Brightness Galaxies , 2000 .

[64]  P. Palunas,et al.  Maximum Disk Mass Models for Spiral Galaxies , 2000, astro-ph/0009161.

[65]  E. Lieb,et al.  A Rigorous Derivation¶of the Gross–Pitaevskii Energy Functional¶for a Two-dimensional Bose Gas , 2000, cond-mat/0005026.

[66]  R. Swaters,et al.  High-Resolution Rotation Curves of Low Surface Brightness Galaxies , 2000, The Astrophysical journal.

[67]  A. J. Drake,et al.  The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations , 2000, astro-ph/0001272.

[68]  K. Freeman,et al.  The Baryonic Tully-Fisher Relation , 1999, The Astrophysical journal.

[69]  Australia.,et al.  Surface photometry of bulge dominated low surface brightness galaxies , 1999, astro-ph/9909483.

[70]  E. Lieb,et al.  Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional , 1999, math-ph/9908027.

[71]  P. Sikivie Caustic ring singularity , 1999, astro-ph/9902210.

[72]  E. al.,et al.  Measurement of the top quark pair production cross section in pp̄ collisions using multijet final states , 1998, hep-ex/9808034.

[73]  F. Dalfovo,et al.  Theory of Bose-Einstein condensation in trapped gases , 1998, cond-mat/9806038.

[74]  Zachary Dutton,et al.  Near-Resonant Spatial Images of Confined Bose-Einstein Condensates in a 4-Dee Magnetic Bottle , 1998, cond-mat/9804278.

[75]  C. Impey,et al.  A wide field ccd survey for low surface brightness galaxies. II. Color distributions, stellar populations, and missing baryons , 1997 .

[76]  J. Gallagher,et al.  B and V CCD Photometry of Southern, Extreme Late-Type Spiral Galaxies , 1997, astro-ph/9709145.

[77]  N. J. Druten,et al.  Two-Step Condensation of the Ideal Bose Gas in Highly Anisotropic Traps , 1997 .

[78]  P. Sikivie Dark matter axions and caustic rings , 1997, hep-ph/9709477.

[79]  A. Burkert The structure of dark matter halos. Observation versus theory , 1997, astro-ph/9703057.

[80]  J. Andersen,et al.  Bose-Einstein condensation in anisotropic harmonic traps , 1996, cond-mat/9611061.

[81]  W. Ketterle,et al.  Bose-Einstein condensation of a finite number of particles trapped in one or three dimensions. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[82]  P. Salucci,et al.  The Universal Rotation Curve of Spiral Galaxies: I. the Dark Matter Connection , 1995, astro-ph/9506004.

[83]  F. Ravndal,et al.  A more accurate analysis of Bose-Einstein condensation in harmonic traps , 1996, cond-mat/9605100.

[84]  P. Mannheim Are Galactic Rotation Curves Really Flat? , 1996, astro-ph/9605085.

[85]  Kirsten,et al.  Bose-Einstein condensation of atomic gases in a general harmonic-oscillator confining potential trap. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[86]  K. B. Davis,et al.  Bose-Einstein Condensation in a Gas of Sodium Atoms , 1995, EQEC'96. 1996 European Quantum Electronic Conference.

[87]  S. Grossmann,et al.  On Bose-Einstein condensation in harmonic traps , 1995 .

[88]  Bradley,et al.  Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions. , 1995, Physical review letters.

[89]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[90]  P. Salucci,et al.  The Universal Rotation Curve of Spiral Galaxies: I. the Dark Matter Connection , 1995, astro-ph/9506004.

[91]  J. Moffat Galaxy Dynamics Predictions in the Nonsymmetric Gravitational Theory , 1994, astro-ph/9412095.

[92]  S. McGaugh OXYGEN ABUNDANCES IN LOW SURFACE BRIGHTNESS DISK GALAXIES , 1993, astro-ph/9311064.

[93]  S. Sin Late time cosmological phase transition and galactic halo as Bose liquid , 1992, hep-ph/9205208.

[94]  S. Sonego Interpretation of the hydrodynamical formalism of quantum mechanics , 1991 .

[95]  Barry F. Madore,et al.  The NASA/IPAC Extragalactic Database , 1990 .

[96]  R. Sanders ANTI-GRAVITY AND GALAXY ROTATION CURVES , 1984 .

[97]  M. Milgrom A modification of the newtonian dynamics as a possible alternative to the hidden mass hypothesis , 1983 .

[98]  R. Peccei,et al.  CP Conservation in the Presence of Pseudoparticles , 1977 .

[99]  E. Gross,et al.  Hydrodynamics of a Superfluid Condensate , 1963 .

[100]  E. Gross Structure of a quantized vortex in boson systems , 1961 .

[101]  E. Madelung,et al.  Quantentheorie in hydrodynamischer Form , 1927 .

[102]  Search for invisible decays of a Higgs boson produced in association with a Z boson in ATLAS The ATLAS Collaboration , 2014 .

[103]  Accepted Received , 2006 .

[104]  D. Caldwell Current aspects of neutrino physics , 2001 .

[105]  G. Lake,et al.  The Structure of Cold Dark Matter Halos , 1998 .

[106]  R. H. Wynar,et al.  Bose-Einstein condensation of large numbers of atoms in a magnetic time-averaged orbiting potential trap , 1998 .

[107]  Gerhard Rempe,et al.  Bose-Einstein condensation in a pure Ioffe-Pritchard field configuration , 1998 .

[108]  G. Tammann Dwarf Galaxies in the Past , 1994 .

[109]  Sin Late-time phase transition and the galactic halo as a Bose liquid. , 1994, Physical review. D, Particles and fields.

[110]  K. Freeman On the disks of spiral and SO Galaxies , 1970 .

[111]  Jose Luis. Sersic,et al.  Atlas de Galaxias Australes , 1968 .