SQUEEZE: fast and progressive decompression of triangle meshes

An ideal triangle mesh compression technology would simultaneously support the following objectives: (1) progressive refinements of the received mesh during decompression, (2) nearly optimal compression ratios for both geometry and connectivity, and (3) in-line, real-time decompression algorithms for hardware or software implementations. Because these three objectives impose contradictory constraints, previously reported efforts have focused primarily on one (sometimes two) of these objectives. The SQUEEZE technique introduced in this paper addresses all three constraints simultaneously, and attempts to provide the best possible compromise. For a mesh of T triangles, SQUEEZE compresses the connectivity to 3.7T bits, which is competitive with the best progressive compression techniques reported so far. The geometric prediction error encoding technique introduced in this paper leads to a geometry compression that is improved by 20% over that of previous schemes. Our initial implementation on a 300-MHz CPU achieved a decompression rate of up to 46,000 triangles per second. SQUEEZE downloads a model through a number of successive refinement stages, providing the benefit of progressivity.

[1]  David Levin,et al.  Progressive Compression of Arbitrary Triangular Meshes , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[2]  Leila De Floriani,et al.  Compressing TINs , 1998, GIS '98.

[3]  André Guéziec,et al.  Locally Toleranced Surface Simplification , 1999, IEEE Trans. Vis. Comput. Graph..

[4]  Renato Pajarola,et al.  Fast Huffman Code Processing , 1999 .

[5]  Greg Turk,et al.  Fast and memory efficient polygonal simplification , 1998 .

[6]  Arun N. Netravali,et al.  Digital Pictures: Representation, Compression and Standards , 1995 .

[7]  Gabriel Taubin,et al.  Efficient compression of non-manifold polygonal meshes , 1999 .

[8]  Rémi Ronfard,et al.  Full‐range approximation of triangulated polyhedra. , 1996, Comput. Graph. Forum.

[9]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[10]  J. Rossignac Edgebreaker: Compressing the incidence graph of triangle meshes , 1998 .

[11]  Paul S. Heckbert,et al.  Survey of Polygonal Surface Simplification Algorithms , 1997 .

[12]  Craig Gotsman,et al.  Triangle Mesh Compression , 1998, Graphics Interface.

[13]  Jarek Rossignac,et al.  Multi-resolution 3D approximations for rendering complex scenes , 1993, Modeling in Computer Graphics.

[14]  Peter Lindstrom,et al.  Evaluation of Memoryless Simplification , 1999, IEEE Trans. Vis. Comput. Graph..

[15]  Gabriel Taubin,et al.  Efficient compression of non-manifold polygonal meshes , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[16]  Jarek Rossignac,et al.  Edgebreaker: Connectivity Compression for Triangle Meshes , 1999, IEEE Trans. Vis. Comput. Graph..

[17]  Andrzej Sieminski,et al.  Fast Decoding of the Huffman Codes , 1988, Inf. Process. Lett..

[18]  Gabriel Taubin,et al.  Progressive forest split compression , 1998, SIGGRAPH.

[19]  Ian H. Witten,et al.  Arithmetic coding for data compression , 1987, CACM.

[20]  Renato Pajarola,et al.  Compressed Progressive Meshes , 2000, IEEE Trans. Vis. Comput. Graph..

[21]  Paul G. Howard,et al.  The design and analysis of efficient lossless data compression systems , 1993 .

[22]  Michael Deering,et al.  Geometry compression , 1995, SIGGRAPH.

[23]  Renato Pajarola,et al.  Implant sprays: compression of progressive tetrahedral mesh connectivity , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[24]  D. Huffman A Method for the Construction of Minimum-Redundancy Codes , 1952 .

[25]  Hugues Hoppe,et al.  Efficient implementation of progressive meshes , 1998, Comput. Graph..

[26]  Wolfgang Straßer,et al.  Real time compression of triangle mesh connectivity , 1998, SIGGRAPH.

[27]  Tony DeRose,et al.  Mesh optimization , 1993, SIGGRAPH.

[28]  Valerio Pascucci,et al.  Progressive compression and transmission of arbitrary triangular meshes , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[29]  Gabriel Taubin,et al.  Geometric compression through topological surgery , 1998, TOGS.

[30]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[31]  David Salomon,et al.  Data Compression: The Complete Reference , 2006 .

[32]  David A. Huffman,et al.  A method for the construction of minimum-redundancy codes , 1952, Proceedings of the IRE.