Compactness of discrete approximate solutions to parabolic PDEs - Application to a turbulence model

In this paper, we prove an adaptation of the classical compactness Aubin-Simon lemma to sequences of functions obtained through a sequence of discretizations of a parabolic problem. The main difficulty tackled here is to generalize the classical proof to handle the dependency of the norms controlling each function $u^{(n)}$ of the sequence with respect to $n$. This compactness result is then used to prove the convergence of a numerical scheme combining finite volumes and finite elements for the solution of a reduced turbulence problem.

[1]  Roger Lewandowski,et al.  The mathematical analysis of the coupling of a turbulent kinetic energy equation to the Navier-Stokes equation with an eddy viscosity , 1997 .

[2]  J. Vázquez,et al.  An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations , 1995 .

[3]  R. Eymard,et al.  Discretisation of heterogeneous and anisotropic diffusion problems on general non-conforming meshes. SUSHI: a scheme using stabilisation and hybrid interfaces , 2008, 0801.1430.

[4]  T. Gallouët,et al.  Non-linear elliptic and parabolic equations involving measure data , 1989 .

[5]  Thierry Gallouët,et al.  A convergent finite element-finite volume scheme for the compressible Stokes problem. Part II: the isentropic case , 2009, Math. Comput..

[6]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[7]  R. Temam Navier-Stokes Equations , 1977 .

[8]  Stéphane Clain Analyse mathématique et numérique d"un modèle de chauffage par induction , 1994 .

[9]  Thierry Gallouët,et al.  A convergent finite element-finite volume scheme for the compressible Stokes problem. Part I: The isothermal case , 2007, Math. Comput..

[10]  R. Rannacher,et al.  Simple nonconforming quadrilateral Stokes element , 1992 .

[11]  Thierry Gallouët,et al.  Convergence of a finite volume scheme for the convection-diffusion equation with L1 data , 2012, Math. Comput..

[12]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[13]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.

[14]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[15]  J. Vázquez,et al.  An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations , 2018 .

[16]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[17]  Jacques Simeon,et al.  Compact Sets in the Space L~(O, , 2005 .

[18]  Giovanni Cimatti,et al.  Existence of weak solutions for the nonstationary problem of the Joule heating of a conductor , 1992 .