Compactness of discrete approximate solutions to parabolic PDEs - Application to a turbulence model
暂无分享,去创建一个
[1] Roger Lewandowski,et al. The mathematical analysis of the coupling of a turbulent kinetic energy equation to the Navier-Stokes equation with an eddy viscosity , 1997 .
[2] J. Vázquez,et al. An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations , 1995 .
[3] R. Eymard,et al. Discretisation of heterogeneous and anisotropic diffusion problems on general non-conforming meshes. SUSHI: a scheme using stabilisation and hybrid interfaces , 2008, 0801.1430.
[4] T. Gallouët,et al. Non-linear elliptic and parabolic equations involving measure data , 1989 .
[5] Thierry Gallouët,et al. A convergent finite element-finite volume scheme for the compressible Stokes problem. Part II: the isentropic case , 2009, Math. Comput..
[6] P. Raviart,et al. Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .
[7] R. Temam. Navier-Stokes Equations , 1977 .
[8] Stéphane Clain. Analyse mathématique et numérique d"un modèle de chauffage par induction , 1994 .
[9] Thierry Gallouët,et al. A convergent finite element-finite volume scheme for the compressible Stokes problem. Part I: The isothermal case , 2007, Math. Comput..
[10] R. Rannacher,et al. Simple nonconforming quadrilateral Stokes element , 1992 .
[11] Thierry Gallouët,et al. Convergence of a finite volume scheme for the convection-diffusion equation with L1 data , 2012, Math. Comput..
[12] J. Lions. Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .
[13] R. Eymard,et al. Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.
[14] P. G. Ciarlet,et al. Basic error estimates for elliptic problems , 1991 .
[15] J. Vázquez,et al. An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations , 2018 .
[16] J. Simon. Compact sets in the spaceLp(O,T; B) , 1986 .
[17] Jacques Simeon,et al. Compact Sets in the Space L~(O, , 2005 .
[18] Giovanni Cimatti,et al. Existence of weak solutions for the nonstationary problem of the Joule heating of a conductor , 1992 .