A late-stage hydrothermal phosphatebearing montmorillonite argillitization from the tourmaline-bearing pegmatite of Slto dos Quintos mine, northeast brazil

Abstract The Alto dos Quintos Mine, Rio Grande do Norte, northeast region of Brazil, is one of the few mines where a LCT (Li-Cs-Ta-enriched) pegmatite is exploited for the deep blue gemstone called ‘‘Paraiba Tourmaline (PT)’’. Blue cuprian elbaite, a fault-bound pink montmorillonite bearing some relict apatite and newly-formed Ca-Al-phosphate of the Al-P-sulphate group (APS minerals) also occur in the underground mine. The montmorillonite was studied using extended clay mineralogical tools (XRD, IR spectroscopy, XRF, SEM-EDX, cation exchange capacity (CEC), DTA). The structural formula method for calculation of the smectite formula based on EDX data yielded an extremely Fe-poor montmorillonite: (Ca2+0.2)(Al1.7Fe0.0Mg0.4)(Si3.8Al0.2). The charge on the tetrahedral sheets accounts for approximately 30% of the total permanent negative charge. However, based on the more precise Hofmann & Klemen test, tetrahedral charge values of 11% to 13% were calculated. This is indicative of the dominance of montmorillonite rather than beidellite among the smectite minerals, which is independently proved by a pronounced IR band at 630 cm−1. The formation of pink montmorillonite is not directly related to the emplacement of the Li-bearing PT pegmatite. The sheet silicate developed after a considerable hiatus (Mesozoic?), when the Neoproterozoic pegmatites had already undergone different stages of hypogene (cookeite) and supergene (illite, kaolinite) alteration, during which Li was flushed out to a degree that formation conditions of expandable Li-bearing phyllosilicates were no longer favoured. The nature of the pinkish tint is not yet clarified. The montmorillonite formed in a temperature regime close to 250°C, when apatite was transformed into Ca-bearing APS minerals under acidic conditions. Cainozoic volcanic activity and the reactivation of deep-seated fault zones are considered to be responsible for the formation of this pink P-bearing montmorillonitic clay.

[1]  H. Dill The “chessboard” classification scheme of mineral deposits: Mineralogy and geology from aluminum to zirconium , 2010 .

[2]  H. Massonne,et al.  A hydrothermal clay mineral assemblage at the Late Proterozoic unconformity in the buenos aires complex−La Tinta Formation, Barker area, Tandilia Ranges (Argentina) , 2010, Clay Minerals.

[3]  S. Marfil,et al.  Alteration zonation in the Loma Blanca kaolin deposit, los Menucos, province of Rio Negro, Argentina , 2010, Clay Minerals.

[4]  J. Duplay,et al.  Clay minerals in the Namacotche Pegmatite Group from Zambezia Province, Mozambique: main constituents of late-stage secondary paragenesis , 2008, Clay Minerals.

[5]  K. Webber,et al.  Pegmatite genesis: state of the art , 2008 .

[6]  Georg Roth,et al.  Quantitative phase analysis of bentonites by the rietveld method , 2008 .

[7]  Marcelo R. R. Da Silva,et al.  Nb–Ta–(Ti–Sn) oxide mineral chemistry as tracer of rare-element granitic pegmatite fractionation in the Borborema Province, Northeastern Brazil , 2008 .

[8]  S. Kaufhold Comparison of methods for the determination of the layer charge density (LCD) of montmorillonites , 2006 .

[9]  F. Colombo,et al.  Geology and mineralogy of some pegmatites in the eastern border of the Punilla District, Córdoba province , 2006 .

[10]  T. Matsui Pink "Pseudomorph" after Plagioclase from the Takakumayama Granite, Kagoshima, Japan , 2006 .

[11]  P. Černý,et al.  THE CLASSIFICATION OF GRANITIC PEGMATITES REVISITED , 2005 .

[12]  M. Nascimento,et al.  Geology and tectonics of the Boa Vista Basin (Paraíba, northeastern Brazil) and geochemistry of associated Cenozoic tholeiitic magmatism , 2005 .

[13]  H. Dill A comparative study of APS minerals of the Pacific Rim fold belts with special reference to south American argillaceous deposits , 2003 .

[14]  M. C. M. D. Toledo,et al.  FOSFATOS ALUMINOSOS COM FERRO DO GRUPO DA CRANDALLITA NAS COBERTURAS LATERÍTICAS DE CATALÃO I, JUQUIÁ E TAPIRA (BRASIL) E CHIRIGUELO (PARAGUAI) , 2002 .

[15]  F. Cravero,et al.  Genesis and applications of the Cerro Rubio kaolin deposit, Patagonia (Argentina) , 2001 .

[16]  M. Barrios,et al.  Mg-Rich Smectite “precursor” Phase in the Tagus Basin, Spain , 2000 .

[17]  M. C. M. D. Toledo O GRUPO DA CRANDALLITA NO MANTO LATERÍTICO SOBRE O MACIÇO CARBONATÍTICO DE CATALÃO I, GO - BRASIL , 2000 .

[18]  P. Long,et al.  The Kinetics of the Smectite to Illite Transformation in Cretaceous Bentonites, Cerro Negro, New Mexico , 1999 .

[19]  L. Meier,et al.  Determination of the Cation Exchange Capacity (CEC) of Clay Minerals Using the Complexes of Copper(II) Ion with Triethylenetetramine and Tetraethylenepentamine , 1999 .

[20]  H. Dill,et al.  Mineralogical and chemical variations in hypogene and supergene kaolin deposits in a mobile fold belt the Central Andes of northwestern Peru , 1997 .

[21]  H. Dill,et al.  Aluminium Phosphate Mineralization from the Hypogene La Vanguardia Kaolin Deposit (Chile) , 1995, Clay Minerals.

[22]  H. Beurlen,et al.  Borborema Pegmatitic Province: geological and geochemical characteristics , 1995 .

[23]  R. Gilkes,et al.  Weathering of Spodumene to Smectite in a Lateritic Environment , 1993 .

[24]  C. Burnham,et al.  A COMPREHENSIVE STRUCTURE.MODEL FOR VESUVIANITE: SYMMETRV VARIATIONS AND CRYSTAL GROWTH , 1992 .

[25]  G. Rossman,et al.  Gem-Quality Cuprian-Elbaite Tourmalines from São José Da Batalha, Paraíba, Brazil , 1990 .

[26]  W. Huff X-ray Diffraction and the Identification and Analysis of Clay Minerals , 1990 .

[27]  J. Richardson,et al.  Crystal structure of a pink muscovite from Archer's Post, Kenya; implications for reverse pleochroism in dioctahedral micas , 1982 .

[28]  W. K. Schuckmann,et al.  Modelo de ocorrência e gênese da argila bentonítica de Boa Vista, Campina Grande, Paraíba , 1981 .

[29]  U. Hofmann,et al.  Verlust der Austauschfähigkeit von Lithiumionen an Bentonit durch Erhitzung , 1950 .