Synchronization of Fractional-Order Hyperchaotic Systems via Fractional-Order Controllers

In this paper, the synchronization of fractional-order chaotic systems is studied and a new fractional-order controller for hyperchaos synchronization is presented based on the Lyapunov stability theory. The proposed synchronized method can be applied to an arbitrary four-dimensional fractional hyperchaotic system. And we give the optimal value of control parameters to achieve synchronization of fractional hyperchaotic system. This approach is universal, simple, and theoretically rigorous. Numerical simulations of several fractional-order hyperchaotic systems demonstrate the universality and the effectiveness of the proposed method.

[1]  H. Schuster Deterministic chaos: An introduction , 1984 .

[2]  B. Onaral,et al.  Linear approximation of transfer function with a pole of fractional power , 1984 .

[3]  Changpin Li,et al.  Chaos in Chen's system with a fractional order , 2004 .

[4]  Erik Mosekilde,et al.  Loss of synchronization in coupled Rössler systems , 2001 .

[5]  R. Bagley,et al.  The fractional order state equations for the control of viscoelastically damped structures , 1989 .

[6]  N. Laskin Fractional market dynamics , 2000 .

[7]  Xing-yuan Wang,et al.  Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control , 2009 .

[8]  M. Ichise,et al.  An analog simulation of non-integer order transfer functions for analysis of electrode processes , 1971 .

[9]  I. Podlubny Fractional-Order Systems and -Controllers , 1999 .

[10]  M. Hirsch,et al.  Differential Equations, Dynamical Systems, and Linear Algebra , 1974 .

[11]  D. Kusnezov,et al.  Quantum Levy Processes and Fractional Kinetics , 1999, chao-dyn/9901002.

[12]  I. Petráš Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation , 2011 .

[13]  Saverio Mascolo,et al.  A Systematic Procedure for Synchronizing Hyperchaos Via Observer Design , 2002, J. Circuits Syst. Comput..

[14]  Gaogao Dong,et al.  A new hyperchaotic system and its synchronization , 2010, Appl. Math. Comput..

[15]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[16]  Mohammad Saleh Tavazoei,et al.  A necessary condition for double scroll attractor existence in fractional-order systems , 2007 .

[17]  Tomasz Kapitaniak,et al.  Chaos-hyperchaos transition in coupled Rössler systems , 2001 .

[18]  Zhi-Hong Guan,et al.  Adaptive synchronization between two different hyperchaotic systems , 2008 .

[19]  An-Pei Wang,et al.  Controlling hyperchaos of the Rossler system , 1999 .

[20]  L. Chua,et al.  HYPERCHAOTIC ATTRACTORS OF UNIDIRECTIONALLY-COUPLED CHUA’S CIRCUITS , 1994 .

[21]  Xingyuan Wang,et al.  A hyperchaos generated from Lorenz system , 2008 .

[22]  Congxu Zhu Controlling hyperchaos in hyperchaotic Lorenz system using feedback controllers , 2010, Appl. Math. Comput..

[23]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[24]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[25]  O. Rössler An equation for hyperchaos , 1979 .

[26]  Simin Yu,et al.  Generating hyperchaotic Lü attractor via state feedback control , 2006 .

[27]  Guanrong Chen,et al.  Generating Hyperchaos via State Feedback Control , 2005, Int. J. Bifurc. Chaos.

[28]  Silvano Cincotti,et al.  Hyperchaotic behaviour of two bi‐directionally coupled Chua's circuits , 2002, Int. J. Circuit Theory Appl..

[29]  Alain Oustaloup,et al.  From fractal robustness to the CRONE control , 1999 .

[30]  Chunguang Li,et al.  Chaos and hyperchaos in the fractional-order Rössler equations , 2004 .

[31]  R. Bagley,et al.  Fractional order state equations for the control of viscoelasticallydamped structures , 1991 .

[32]  Chunguang Li,et al.  Chaos in the fractional order Chen system and its control , 2004 .