Metallothioneins and cytosolic metals in Neomysis integer exposed to cadmium at different salinities.

[1]  WenXian Wang,et al.  Significance of subcellular metal distribution in prey in influencing the trophic transfer of metals in a marine fish , 2006 .

[2]  J. Amiard,et al.  Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. , 2006, Aquatic toxicology.

[3]  Samuel N Luoma,et al.  Why is metal bioaccumulation so variable? Biodynamics as a unifying concept. , 2005, Environmental science & technology.

[4]  P. Rainbow,et al.  Physicochemistry or physiology: cadmium uptake and effects of salinity and osmolality in three crabs of different ecologies , 2005 .

[5]  A. Ibhadon,et al.  Trace metal speciation and contamination in an intertidal estuary. , 2004, Journal of environmental monitoring : JEM.

[6]  M. Anke,et al.  Elements and their compounds in the environment , 2004 .

[7]  E. Merian Metals and their compounds , 2004 .

[8]  Colin R. Janssen,et al.  The toxicity of metal mixtures to the estuarine mysid Neomysis integer (Crustacea: Mysidacea) under changing salinity. , 2003, Aquatic toxicology.

[9]  William G. Wallace,et al.  Subcellular compartmentalization of Cd and Zn in two bivalves. II. Significance of trophically available metal (TAM) , 2003 .

[10]  S. Luoma,et al.  Subcellular compartmentalization of Cd and Zn in two bivalves. I. Significance of metal-sensitive fractions (MSF) and biologically detoxified metal (BDM) , 2003 .

[11]  P. Rainbow Erratum to “Trace metal concentrations in aquatic invertebrates: why and so what?” , 2003 .

[12]  P. Rainbow,et al.  Effects of changes in salinity and osmolality on the rate of uptake of zinc by three crabs of different ecologies , 2002 .

[13]  B. D. Smith,et al.  Partitioning of accumulated trace metals in the talitrid amphipod crustacean Orchestia gammarellus: a cautionary tale on the use of metallothionein-like proteins as biomarkers. , 2002, Aquatic toxicology.

[14]  M. Brouwer,et al.  Role of a copper-specific metallothionein of the blue crab, Callinectes sapidus, in copper metabolism associated with degradation and synthesis of hemocyanin. , 2002, Journal of inorganic biochemistry.

[15]  M. Erk,et al.  Analysis of metallothioneins by the modified Brdicka procedure. , 2001, Talanta.

[16]  J. Widdows,et al.  Effects of salinity and chemical speciation on cadmium accumulation and toxicity to two mysid species , 2001, Environmental toxicology and chemistry.

[17]  Biserka Raspor,et al.  Elucidation of the mechanism of the Brdička reaction , 2001 .

[18]  M. Brouwer,et al.  Cloning and sequencing of cDNAs encoding for a novel copper-specific metallothionein and two cadmium-inducible metallothioneins from the blue crab Callinectes sapidus. , 2000, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.

[19]  Malcolm B. Jones,et al.  Salinity change and the toxicity of the free cadmium ion [Cd2+(aq)] to Neomysis integer (Crustacea: Mysidacea) , 1998 .

[20]  P. Rainbow Phylogeny of trace metal accumulation in crustaceans , 1998 .

[21]  M. Bebianno,et al.  Metal metabolism in aquatic environments , 1998 .

[22]  William G. Wallace,et al.  Bioavailability of biologically sequestered cadmium and the implications of metal detoxification , 1997 .

[23]  P. Rainbow Ecophysiology of trace metal uptake in crustaceans , 1997 .

[24]  G. Lopez,et al.  Relationship between subcellular cadmium distribution in prey and cadmium trophic transfer to a predator , 1996 .

[25]  Andersen,et al.  Apparent water permeability as a physiological parameter in crustaceans , 1996, The Journal of experimental biology.

[26]  P. Rainbow Physiology, physicochemistry and metal uptake—A crustacean perspective , 1995 .

[27]  D. Turner,et al.  Metal speciation and bioavailability in aquatic systems , 1995 .

[28]  A. Viarengo,et al.  Mechanisms of heavy metal cation homeostasis in marine invertebrates , 1993 .

[29]  P. O’Brien,et al.  Physicochemical and physiological effects on the uptake of dissolved zinc and cadmium by the amphipod crustacean Orchestia gammarellus , 1993 .

[30]  F. Walsh Toxic metal chemistry in marine environments , 1992 .

[31]  M. Depledge Re-evaluation of metabolic requirements for copper and zinc in decapod crustaceans , 1989 .

[32]  M. Roberts,et al.  The effect of salinity on cadmium toxicity to the estuarine mysid Mysidopsis bahia: role of chemical speciation , 1988 .

[33]  M. Roberts,et al.  Osmoregulation in the estuarine mysid, Mysidopsis bahia molenock: comparison with other mysid species , 1987 .

[34]  P. Sorgeloos,et al.  Manual for the culture and use of brine shrimp Artemia in aquaculture , 1986 .

[35]  S. Morris,et al.  Modulation of haemocyanin oxygen affinity in the prawn, Palaemon elegans (Rathke) under environmental salinity stress , 1985 .

[36]  W. Langston,et al.  A guide to the assessment of heavy metal contamination in estuaries using biological indicators. Occasional Publication of the Marine Biological Association 4 , 1985 .

[37]  M. Grieshaber,et al.  Modulation of haemocyanin oxygen affinity in the intertidal prawn Palaemon elegans (Rathke). , 1984, Respiration physiology.

[38]  J. Gutknecht Cadmium and thallous ion permeabilities through lipid bilayer membranes. , 1983, Biochimica et biophysica acta.

[39]  M Hutton,et al.  Sources of cadmium in the environment. , 1983, Ecotoxicology and environmental safety.

[40]  R. Volpe,et al.  The effect of cadmium on the environment. , 1983, Ecotoxicology and environmental safety.

[41]  B. Fowler,et al.  Factors influencing cadmium accumulation and its toxicity to marine organisms , 1979, Environmental health perspectives.

[42]  W. Sunda,et al.  Effect of chemical speciation on toxicity of cadmium to grass shrimp, Palaemonetes pugio: importance of free cadmium ion , 1978 .

[43]  J. Hunt Metal ions in aqueous solution , 1963 .