Principles of Genome Evolution in the Drosophila melanogaster Species Group

That closely related species often differ by chromosomal inversions was discovered by Sturtevant and Plunkett in 1926. Our knowledge of how these inversions originate is still very limited, although a prevailing view is that they are facilitated by ectopic recombination events between inverted repetitive sequences. The availability of genome sequences of related species now allows us to study in detail the mechanisms that generate interspecific inversions. We have analyzed the breakpoint regions of the 29 inversions that differentiate the chromosomes of Drosophila melanogaster and two closely related species, D. simulans and D. yakuba, and reconstructed the molecular events that underlie their origin. Experimental and computational analysis revealed that the breakpoint regions of 59% of the inversions (17/29) are associated with inverted duplications of genes or other nonrepetitive sequences. In only two cases do we find evidence for inverted repetitive sequences in inversion breakpoints. We propose that the presence of inverted duplications associated with inversion breakpoint regions is the result of staggered breaks, either isochromatid or chromatid, and that this, rather than ectopic exchange between inverted repetitive sequences, is the prevalent mechanism for the generation of inversions in the melanogaster species group. Outgroup analysis also revealed evidence for widespread breakpoint recycling. Lastly, we have found that expression domains in D. melanogaster may be disrupted in D. yakuba, bringing into question their potential adaptive significance.

[1]  M. Noor,et al.  Localization and characterization of X chromosome inversion breakpoints separating Drosophila mojavensis and Drosophila arizonae. , 2007, The Journal of heredity.

[2]  Michael Ashburner,et al.  Recurrent insertion and duplication generate networks of transposable element sequences in the Drosophila melanogaster genome , 2006, Genome Biology.

[3]  A. Long,et al.  Fine scale structural variants distinguish the genomes of Drosophila melanogaster and D. pseudoobscura , 2006, Genome Biology.

[4]  E. Eichler,et al.  Primate segmental duplications: crucibles of evolution, diversity and disease , 2006, Nature Reviews Genetics.

[5]  B. Charlesworth,et al.  Rates and Patterns of Chromosomal Evolution in Drosophila pseudoobscura and D. miranda , 2006, Genetics.

[6]  Frédéric Simard,et al.  Breakpoint structure reveals the unique origin of an interspecific chromosomal inversion (2La) in the Anopheles gambiae complex. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[7]  M. Aguadé,et al.  CHROMOSOMAL EVOLUTION OF ELEMENTS B AND C IN THE SOPHOPHORA SUBGENUS OF DROSOPHILA: EVOLUTIONARY RATE AND POLYMORPHISM , 2006, Evolution; international journal of organic evolution.

[8]  B. Dujon,et al.  Highly Variable Rates of Genome Rearrangements between Hemiascomycetous Yeast Lineages , 2006, PLoS genetics.

[9]  E. Eichler,et al.  Chromosome evolution in eukaryotes: a multi-kingdom perspective. , 2005, Trends in genetics : TIG.

[10]  W. Stephan,et al.  Inferring the effects of demography and selection on Drosophila melanogaster populations from a chromosome-wide scan of DNA variation. , 2005, Molecular biology and evolution.

[11]  L. Feuk,et al.  Discovery of Human Inversion Polymorphisms by Comparative Analysis of Human and Chimpanzee DNA Sequence Assemblies , 2005, PLoS genetics.

[12]  P. D. de Jong,et al.  Independent intrachromosomal recombination events underlie the pericentric inversions of chimpanzee and gorilla chromosomes homologous to human chromosome 16. , 2005, Genome research.

[13]  J. Coyne,et al.  Multilocus Analysis of Introgression Between Two Sympatric Sister Species of Drosophila: Drosophila yakuba and D. santomea , 2005, Genetics.

[14]  Matthew W. Hahn,et al.  Genomic Islands of Speciation in Anopheles gambiae , 2005, PLoS biology.

[15]  P. Pevzner,et al.  Dynamics of Mammalian Chromosome Evolution Inferred from Multispecies Comparative Maps , 2005, Science.

[16]  L. Matzkin,et al.  The Structure and Population Genetics of the Breakpoints Associated With the Cosmopolitan Chromosomal Inversion In(3R)Payne in Drosophila melanogaster , 2005, Genetics.

[17]  Casey M. Bergman,et al.  Combined Evidence Annotation of Transposable Elements in Genome Sequences , 2005, PLoS Comput. Biol..

[18]  I. Makunin,et al.  Genomic analysis of Drosophila chromosome underreplication reveals a link between replication control and transcriptional territories. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Andrés Moya,et al.  Genome Rearrangement Distances and Gene Order Phylogeny in γ-Proteobacteria , 2005 .

[20]  K. H. Wolfe,et al.  Clusters of co-expressed genes in mammalian genomes are conserved by natural selection. , 2005, Molecular biology and evolution.

[21]  K. Pätau Chromosomenmorphologie bei Drosophila melanogaster und Drosophila simulans und ihre genetische Bedeutung , 1935, Naturwissenschaften.

[22]  Andrés Moya,et al.  Genome rearrangement distances and gene order phylogeny in gamma-Proteobacteria. , 2005, Molecular biology and evolution.

[23]  Peer Bork,et al.  Comparative architectures of mammalian and chicken genomes reveal highly variable rates of genomic rearrangements across different lineages. , 2005, Genome research.

[24]  G. Spicer Molecular evolution among someDrosophila species groups as indicated by two-dimensional electrophoresis , 2005, Journal of Molecular Evolution.

[25]  Inna Dubchak,et al.  Comparative genome sequencing of Drosophila pseudoobscura: chromosomal, gene, and cis-element evolution. , 2005, Genome research.

[26]  Aeilko H. Zwinderman,et al.  Modelling the correlation between the activities of adjacent genes in drosophila , 2005, BMC Bioinformatics.

[27]  Pavel A Pevzner,et al.  Mammalian phylogenomics comes of age. , 2004, Trends in genetics : TIG.

[28]  H. Hameister,et al.  Breakpoint analysis of the pericentric inversion between chimpanzee chromosome 10 and the homologous chromosome 12 in humans , 2004, Cytogenetic and Genome Research.

[29]  E. Green,et al.  Comparative sequence analysis of the Gdf6 locus reveals a duplicon-mediated chromosomal rearrangement in rodents and rapidly diverging coding and regulatory sequences. , 2004, Genomics.

[30]  Scott A. Rifkin,et al.  A Gene Expression Map for the Euchromatic Genome of Drosophila melanogaster , 2004, Science.

[31]  A. Delcher,et al.  Human, mouse, and rat genome large-scale rearrangements: stability versus speciation. , 2004, Genome research.

[32]  Brian Oliver,et al.  A survey of ovary-, testis-, and soma-biased gene expression in Drosophila melanogaster adults , 2004, Genome Biology.

[33]  Horst Hameister,et al.  Segmental duplication associated with the human-specific inversion of chromosome 18: a further example of the impact of segmental duplications on karyotype and genome evolution in primates , 2004, Human Genetics.

[34]  S. Oliver,et al.  Effects of reciprocal chromosomal translocations on the fitness of Saccharomyces cerevisiae , 2004, EMBO reports.

[35]  C. Pál,et al.  The evolutionary dynamics of eukaryotic gene order , 2004, Nature Reviews Genetics.

[36]  P. Pevzner,et al.  Reconstructing the genomic architecture of ancestral mammals: lessons from human, mouse, and rat genomes. , 2004, Genome research.

[37]  Sudhir Kumar,et al.  Temporal patterns of fruit fly (Drosophila) evolution revealed by mutation clocks. , 2003, Molecular biology and evolution.

[38]  P. Szankasi,et al.  Mitotic recombination between dispersed but related rRNA genes of Schizosaccharomyces pombe generates a reciprocal translocation , 1986, Molecular and General Genetics MGG.

[39]  M. Ashburner,et al.  Relationships within the melanogaster species subgroup of the genus Drosophila (Sophophora) , 1984, Chromosoma.

[40]  M. Ashburner,et al.  Molecular organization of the Drosophila melanogaster Adh chromosomal region in D. replete and D. buzzatii, two distantly related species of the Drosophila subgenus , 2004, Chromosome Research.

[41]  D. Haussler,et al.  Hotspots of mammalian chromosomal evolution , 2004, Genome Biology.

[42]  M Vingron,et al.  An integrated gene annotation and transcriptional profiling approach towards the full gene content of the Drosophila genome , 2003, Genome Biology.

[43]  D. Haussler,et al.  Evolution's cauldron: Duplication, deletion, and rearrangement in the mouse and human genomes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[44]  S. Scherer,et al.  Enrichment of segmental duplications in regions of breaks of synteny between the human and mouse genomes suggest their involvement in evolutionary rearrangements. , 2003, Human molecular genetics.

[45]  Hiroshi Akashi,et al.  Molecular Phylogeny of the Drosophila melanogaster Species Subgroup , 2003, Journal of Molecular Evolution.

[46]  B. Roe,et al.  Refinement of a chimpanzee pericentric inversion breakpoint to a segmental duplication cluster , 2003, Genome Biology.

[47]  W. Anderson,et al.  Evolutionary genomics of inversions in Drosophila pseudoobscura: Evidence for epistasis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[48]  P. Pevzner,et al.  Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[49]  A. Ruíz,et al.  LOW OCCURRENCE OF GENE TRANSPOSITION EVENTS DURING THE EVOLUTION OF THE GENUS DROSOPHILA , 2003, Evolution; international journal of organic evolution.

[50]  B. Birren,et al.  Sequencing and comparison of yeast species to identify genes and regulatory elements , 2003, Nature.

[51]  M. Cáceres,et al.  The foldback-like transposon Galileo is involved in the generation of two different natural chromosomal inversions of Drosophila buzzatii. , 2003, Molecular biology and evolution.

[52]  S. Oliver,et al.  Engineering evolution to study speciation in yeasts , 2003, Nature.

[53]  Michael Ashburner,et al.  Annotation of the Drosophila melanogaster euchromatic genome: a systematic review , 2002, Genome Biology.

[54]  A. Gnirke,et al.  Assessing the impact of comparative genomic sequence data on the functional annotation of the Drosophila genome , 2002, Genome Biology.

[55]  M. Ashburner,et al.  The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective , 2002, Genome Biology.

[56]  Yuri Y. Shevelyov,et al.  Large clusters of co-expressed genes in the Drosophila genome , 2002, Nature.

[57]  Kevin R. Thornton,et al.  Retroposed new genes out of the X in Drosophila. , 2002, Genome research.

[58]  A. Weeks,et al.  Dissecting adaptive clinal variation: markers, inversions and size/stress associations in Drosophila melanogaster from a central field population , 2002 .

[59]  J. Powell,et al.  Speciation Within Anopheles gambiae-- the Glass Is Half Full , 2002, Science.

[60]  Amparo Querol,et al.  Molecular characterization of a chromosomal rearrangement involved in the adaptive evolution of yeast strains. , 2002, Genome research.

[61]  A. Ruíz,et al.  Chromosomal elements evolve at different rates in the Drosophila genome. , 2002, Genetics.

[62]  Gerald M Rubin,et al.  Evidence for large domains of similarly expressed genes in the Drosophila genome , 2002, Journal of biology.

[63]  K. H. Wolfe,et al.  Fourfold faster rate of genome rearrangement in nematodes than in Drosophila. , 2002, Genome research.

[64]  Glenn Tesler,et al.  GRIMM: genome rearrangements web server , 2002, Bioinform..

[65]  D. Levin The Role of Chromosomal Change in Plant Evolution , 2002 .

[66]  J. Davière,et al.  Potential role of transposable elements in the rapid reorganization of the Fusarium oxysporum genome. , 2001, Fungal genetics and biology : FG & B.

[67]  M. Noor,et al.  Chromosomal inversions and the reproductive isolation of species , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[68]  J. Locke,et al.  Whole arm inversions of chromosome 4 in Drosophila species , 2001, Chromosoma.

[69]  P. Stankiewicz,et al.  The evolutionary chromosome translocation 4;19 in Gorilla gorilla is associated with microduplication of the chromosome fragment syntenic to sequences surrounding the human proximal CMT1A-REP. , 2001, Genome research.

[70]  L H. Rieseberg,et al.  Chromosomal rearrangements and speciation. , 2001, Trends in ecology & evolution.

[71]  Ferran Casals,et al.  How malleable is the eukaryotic genome? Extreme rate of chromosomal rearrangement in the genus Drosophila. , 2001, Genome research.

[72]  F. Lemeunier,et al.  Evolutionary novelties in islands: Drosophila santomea, a new melanogaster sister species from São Tomé , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[73]  S. Oliver,et al.  Chromosomal evolution in Saccharomyces , 2000, Nature.

[74]  M. Lazar,et al.  Post-transcriptional Regulation of Thyroid Hormone Receptor Expression by cis-Acting Sequences and a Naturally Occurring Antisense RNA* , 2000, The Journal of Biological Chemistry.

[75]  R. Gibbs,et al.  PipMaker--a web server for aligning two genomic DNA sequences. , 2000, Genome research.

[76]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[77]  J. Wall,et al.  Unusual haplotype structure at the proximal breakpoint of In(2L)t in a natural population of Drosophila melanogaster. , 1999, Genetics.

[78]  F. Jongejan,et al.  Molecular characterization of ticks and tick-borne pathogens. , 1999, Parassitologia.

[79]  M. Cáceres,et al.  Generation of a widespread Drosophila inversion by a transposable element. , 1999, Science.

[80]  Thomas L. Madden,et al.  BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences. , 1999, FEMS microbiology letters.

[81]  J. Powell,et al.  Population structure, speciation, and introgression in the Anopheles gambiae complex. , 1999, Parassitologia.

[82]  D. Hartl,et al.  Selective sweep of a newly evolved sperm-specific gene in Drosophila , 1998, Nature.

[83]  D. Petrov,et al.  Pseudogene evolution in Drosophila suggests a high rate of DNA loss. , 1998, Molecular biology and evolution.

[84]  K. Mathiopoulos,et al.  Cloning of inversion breakpoints in the Anopheles gambiae complex traces a transposable element at the inversion junction. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[85]  N. Campo,et al.  A Natural Large Chromosomal Inversion inLactococcus lactis Is Mediated by Homologous Recombination between Two Insertion Sequences , 1998, Journal of bacteriology.

[86]  C. Vaquero,et al.  Do natural antisense transcripts make sense in eukaryotes? , 1998, Gene.

[87]  M. Aguadé,et al.  Molecular and chromosomal phylogeny in the obscura group of Drosophila inferred from sequences of the rp49 gene region. , 1998, Molecular phylogenetics and evolution.

[88]  M. Cáceres,et al.  Chromosomal evolution and comparative gene mapping in the Drosophila repleta species group , 1997 .

[89]  Jeffrey R. Powell,et al.  Progress and Prospects in Evolutionary Biology: The Drosophila Model , 1997 .

[90]  D. Hartl,et al.  Discordant rates of chromosome evolution in the Drosophila virilis species group. , 1997, Genetics.

[91]  D. Hartl,et al.  A framework physical map of Drosophila virilis based on P1 clones: applications in genome evolution , 1997, Chromosoma.

[92]  A. Ruíz,et al.  Chromosomal homology and molecular organization of Muller's elements D and E in the Drosophila repleta species group. , 1997, Genetics.

[93]  D. Petrov,et al.  High intrinsic rate of DNA loss in Drosophila , 1996, Nature.

[94]  D. Hartl,et al.  Molecular phylogeny and genome evolution in the Drosophila virilis species group: duplications of the alcohol dehydrogenase gene. , 1996, Molecular biology and evolution.

[95]  M. Nei,et al.  Molecular phylogeny and divergence times of drosophilid species. , 1995, Molecular biology and evolution.

[96]  D. Hartl,et al.  The Drosophila Genome Map: A Practical Guide , 1995 .

[97]  S. Cirera,et al.  Molecular characterization of the breakpoints of an inversion fixed between Drosophila melanogaster and D. subobscura. , 1995, Genetics.

[98]  W. Eanes,et al.  Isolation and analysis of the breakpoint sequences of chromosome inversion In(3L)Payne in Drosophila melanogaster. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[99]  Johng K. Lim,et al.  Gross chromosome rearrangements mediated by transposable elements in Drosophila melanogaster , 1994, BioEssays : news and reviews in molecular, cellular and developmental biology.

[100]  C. Aquadro,et al.  African and North American populations of Drosophila melanogaster are very different at the DNA level , 1993, Nature.

[101]  F. Ayala,et al.  Phylogenetic reconstruction of the Drosophila obscura group, on the basis of mitochondrial DNA. , 1992, Molecular biology and evolution.

[102]  M. Ashburner,et al.  Drosophila: A laboratory manual , 1990 .

[103]  D. Finnegan,et al.  Eukaryotic transposable elements and genome evolution. , 1989, Trends in genetics : TIG.

[104]  D. Schulze,et al.  DNA sequence comparison among closely related Drosophila species in the mulleri complex. , 1986, Genetics.

[105]  M. Ashburner,et al.  Spontaneous excision of a large composite transposable element of Drosophila melanogaster , 1985, Nature.

[106]  J. Nadeau,et al.  Lengths of chromosomal segments conserved since divergence of man and mouse. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[107]  C. A. Green Cladistic analysis of mosquito chromosome data (Anopheles (Cellia) Myzomyia. , 1982, The Journal of heredity.

[108]  M. Coluzzi,et al.  Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex. , 1979, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[109]  M. Ashburner,et al.  Relationships within the melanogaster species subgroup of the genus Drosophila (Sophophora) - II. Phylogenetic relationships between six species based upon polytene chromosome banding sequences , 1976, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[110]  G. Lefevre photographic representation and interpretation of the polytene chromosomes of Drosophila melanogaster salivary glands , 1976 .

[111]  T. Dobzhansky Genetics of the Evolutionary Process , 1970 .

[112]  J. Krivshenko The chromosomal polymorphism of Drosophila busckii in natural populations. , 1963, Genetics.

[113]  M. White,et al.  Animal cytology and evolution. , 1955 .

[114]  D. Poulson,et al.  Evolution in the Genus Drosophila , 1954, The Yale Journal of Biology and Medicine.

[115]  E. Novitski,et al.  The Homologies of the Chromosome Elements in the Genus Drosophila. , 1941, Genetics.

[116]  I. H. Horton A Comparison of the Salivary Gland Chromosomes of Drosophila Melanogaster and D. Simulans. , 1939, Genetics.

[117]  T. Dobzhansky,et al.  STRUCTURE AND VARIATION OF THE CHROMOSOMES IN DROSOPHILA AZTECA , 1939 .

[118]  G. Beadle,et al.  The Relations of Inversions in the X Chromosome of Drosophila Melanogaster to Crossing over and Disjunction. , 1936, Genetics.

[119]  T. Dobzhansky,et al.  Inversions in the Third Chromosome of Wild Races of Drosophila Pseudoobscura, and Their Use in the Study of the History of the Species. , 1936, Proceedings of the National Academy of Sciences of the United States of America.

[120]  Calvin B. Bridges,et al.  SALIVARY CHROMOSOME MAPSWith a Key to the Banding of the Chromosomes of Drosophila Melanogaster , 1935 .

[121]  A. Sturtevant,et al.  SEQUENCE OF CORRESPONDING THIRD-CHROMOSOME GENES IN DROSOPHILA MELANOGASTER AND D. SIMULANS , 1926 .

[122]  A. Sturtevant,et al.  A Case of Rearrangement of Genes in Drosophila. , 1921, Proceedings of the National Academy of Sciences of the United States of America.

[123]  C. W. Metz Chromosome studies in the Diptera: I. A preliminary survey of five different types of chromosome groups in the genus Drosophila , 1914 .

[124]  Yasuko Takahashi,et al.  Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events , 2022 .