Mechanical inclusions identification by evolutionary computation

ABSTRACT The problem of the identification of mechanical inclusion is theoritically ill-posed, and to-date numerical algorithms have demonstrated to be inaccurate and unstable. On the other hand, Evolutionary Algorithms provide a general approach to inverse problem solving. However, great care must be taken during the implementation: the choice of the representation, which determines the search space, is critical. Three representations are presented and discussed. Whereas the straightforward mesh-dependent representation suffers strong limitations, both mesh-independent representation provide outstanding results on simple instances of the identification problem, including experimental robustness in presence of noise.

[1]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[2]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[3]  Hans-Paul Schwefel,et al.  Numerical Optimization of Computer Models , 1982 .

[4]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[5]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[6]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[7]  Rajarshi Das,et al.  A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization , 1989, ICGA.

[8]  Robert V. Kohn,et al.  Numerical implementation of a variational method for electrical impedance tomography , 1990 .

[9]  Nicholas J. Radcliffe,et al.  Equivalence Class Analysis of Genetic Algorithms , 1991, Complex Syst..

[10]  James R. Levenick Inserting Introns Improves Genetic Algorithm Success Rate: Taking a Cue from Biology , 1991, ICGA.

[11]  P. L. George,et al.  Automatic Mesh Generation: Application to Finite Element Methods , 1992 .

[12]  E. Douglas Jensen,et al.  Topological Structural Design using Genetic Algorithms , 1992 .

[13]  Hans-Georg Beyer,et al.  Toward a Theory of Evolution Strategies: Some Asymptotical Results from the (1,+ )-Theory , 1993, Evolutionary Computation.

[14]  Dirk Thierens,et al.  Mixing in Genetic Algorithms , 1993, ICGA.

[15]  Kazuhiro Saitou,et al.  Genetic algorithms as an approach to configuration and topology design , 1994, DAC 1993.

[16]  Hans-Georg Beyer,et al.  Toward a Theory of Evolution Strategies: The (, )-Theory , 1994, Evolutionary Computation.

[17]  Günter Rudolph,et al.  Convergence analysis of canonical genetic algorithms , 1994, IEEE Trans. Neural Networks.

[18]  A. Constantinescu,et al.  Sur l'identification des modules élastiques , 1994 .

[19]  Patrick D. Surry,et al.  Fitness Variance of Formae and Performance Prediction , 1994, FOGA.

[20]  Terry Jones,et al.  Fitness Distance Correlation as a Measure of Problem Difficulty for Genetic Algorithms , 1995, ICGA.

[21]  Andrew B. Kahng,et al.  Toward More Powerful Recombinations , 1995, ICGA.

[22]  Anthony T. Patera,et al.  Analysis of a part design procedure , 1995 .

[23]  D. Fogel Phenotypes, genotypes, and operators in evolutionary computation , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[24]  Hans-Georg Beyer,et al.  Toward a Theory of Evolution Strategies: On the Benefits of Sex the (/, ) Theory , 1995, Evolutionary Computation.

[25]  David B. Fogel,et al.  Evolutionary Computation: Towards a New Philosophy of Machine Intelligence , 1995 .

[26]  Raphaël Cerf,et al.  An Asymptotic Theory of Genetic Algorithms , 1995, Artificial Evolution.

[27]  Marc Schoenauer,et al.  Genetic Operators for Two-Dimensional Shape Optimization , 1995, Artificial Evolution.

[28]  Hans-Georg Beyer,et al.  Toward a Theory of Evolution Strategies: Self-Adaptation , 1995, Evolutionary Computation.

[29]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[30]  Thomas Bäck,et al.  Evolutionary Algorithms in Theory and Practice , 1996 .

[31]  Marc Schoenauer,et al.  Shape Representations and Evolution Schemes , 1996, Evolutionary Programming.

[32]  Peter J. Fleming,et al.  On the Performance Assessment and Comparison of Stochastic Multiobjective Optimizers , 1996, PPSN.