Measurement of Areas on a Sphere Using Fibonacci and Latitude–Longitude Lattices

The area of a spherical region can be easily measured by considering which sampling points of a lattice are located inside or outside the region. This point-counting technique is frequently used for measuring the Earth coverage of satellite constellations, employing a latitude–longitude lattice. This paper analyzes the numerical errors of such measurements, and shows that they could be greatly reduced if the Fibonacci lattice were used instead. The latter is a mathematical idealization of natural patterns with optimal packing, where the area represented by each point is almost identical. Using the Fibonacci lattice would reduce the root mean squared error by at least 40%. If, as is commonly the case, around a million lattice points are used, the maximum error would be an order of magnitude smaller.

[1]  David G. Kendall,et al.  ON THE NUMBER OF LATTICE POINTS INSIDE A RANDOM OVAL , 1948 .

[2]  American Meteorological Society (B2). , 1963, Science.

[3]  J Oliver,et al.  Earthquake Prediction , 1987, Journal of the World Association for Emergency and Disaster Medicine.

[4]  Probleme de l’implantation d’une grille sur une sphere , 1966 .

[5]  S. K. Zaremba,et al.  Good lattice points, discrepancy, and numerical integration , 1966 .

[6]  Donald E. Knuth,et al.  The Art of Computer Programming, Volume I: Fundamental Algorithms, 2nd Edition , 1997 .

[7]  R. O. Erickson,et al.  Tubular Packing of Spheres in Biological Fine Structure , 1973, Science.

[8]  H. Vogel A better way to construct the sunflower head , 1979 .

[9]  On the problem of equal area block on a sphere , 1981 .

[10]  J. N. Ridley Packing efficiency in sunflower heads , 1982 .

[11]  Random error in point counting , 1983 .

[12]  A. Kimerling,et al.  Area computation from geodetic coordinates on the spheroid , 1984 .

[13]  Parmanand Singh,et al.  The so-called fibonacci numbers in ancient and medieval India , 1985 .

[14]  J. N. Ridley Ideal phyllotaxis on general surfaces of revolution , 1986 .

[15]  D. G. Evans,et al.  Detecting Voronoi (area-of-influence) polygons , 1987 .

[16]  Michael Bevis,et al.  Computing the area of a spherical polygon of arbitrary shape , 1987 .

[17]  M. N. Huxley The area within a curve , 1987 .

[18]  R. Dixon Spiral phyllotaxis , 1989 .

[19]  Przemyslaw Prusinkiewicz,et al.  The Algorithmic Beauty of Plants , 1990, The Virtual Laboratory.

[20]  W. Fischer,et al.  Sphere Packings, Lattices and Groups , 1990 .

[21]  G Vriend,et al.  WHAT IF: a molecular modeling and drug design program. , 1990, Journal of molecular graphics.

[22]  Przemyslaw Prusinkiewicz,et al.  A collision-based model of spiral phyllotaxis , 1992, SIGGRAPH.

[23]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[24]  Douady,et al.  Phyllotaxis as a physical self-organized growth process. , 1992, Physical review letters.

[25]  M. Huxley Exponential sums and lattice points III , 2003 .

[26]  E. Saff,et al.  Minimal Discrete Energy on the Sphere , 1994 .

[27]  Harald Niederreiter,et al.  Integration of nonperiodic functions of two variables by Fibonacci lattice rules , 1994 .

[28]  D. I. Svergun,et al.  Solution scattering from biopolymers: advanced contrast‐variation data analysis , 1994 .

[29]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[30]  Roger V. Jean,et al.  Phyllotaxis: Subject index , 1994 .

[31]  Jianjun Cui,et al.  Equidistribution on the Sphere , 1997, SIAM J. Sci. Comput..

[32]  R. V. Jean,et al.  A History of the Study of Phyllotaxis , 1997 .

[33]  D. I. Svergun,et al.  ASSA, a Program for Three‐Dimensional Rendering in Solution Scattering from Biopolymers , 1997 .

[34]  E. Saff,et al.  Distributing many points on a sphere , 1997 .

[35]  Comparison of the Methods of Rock-Microscopic Grain-Size Determination and Quantitative Analysis , 1997 .

[36]  Walter H. F. Smith,et al.  New, improved version of generic mapping tools released , 1998 .

[37]  Robert J. Bauer,et al.  Distribution of Points on a Sphere with Application to Star Catalogs , 1998 .

[38]  R. Howarth Improved estimators of uncertainty in proportions, point-counting, and pass-fail test results , 1998 .

[40]  B. Greiner Euler rotations in plate-tectonic reconstructions , 1999 .

[41]  Data Structure and Parallel Decomposition Considerations on a Fibonacci Grid , 1999 .

[42]  H. Gundersen,et al.  The efficiency of systematic sampling in stereology — reconsidered , 1999, Journal of microscopy.

[43]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[44]  Washington Y. Ochieng,et al.  An Assessment of the RAIM Performance of a Combined Galileo/GPS Navigation System Using the Marginally Detectable Errors (MDE) Algorithm , 2002, GPS Solutions.

[45]  Laurence Sigler,et al.  Fibonacci's Liber abaci , 2002 .

[46]  Starshine: a student-tracked atmospheric research satellite , 2002 .

[47]  Steven B. Damelin,et al.  Energy functionals, numerical integration and asymptotic equidistribution on the sphere , 2003, J. Complex..

[48]  A. A. Soloviev,et al.  Nonlinear dynamics of the lithosphere and earthquake prediction , 2003 .

[49]  John F Nye A simple method of spherical near-field scanning to measure the far fields of antennas or passive scatterers , 2003 .

[50]  Robert Shcherbakov,et al.  Nonlinear Dynamics of the Lithosphere and Earthquake Prediction , 2003 .

[51]  HM PARMANANDSINGH,et al.  The So-called Fibonacci Numbers in Ancient and Medieval India , 2003 .

[52]  Serafina Cuomo,et al.  Fibonacci’s Liber Abaci: A Translation into Modern English of Leonardo Pisano’s Book of Calculation , 2003 .

[53]  Adrian Baddeley,et al.  Stereology for Statisticians , 2004 .

[54]  J. Hannay,et al.  Fibonacci numerical integration on a sphere , 2004 .

[55]  Johann S. Brauchart,et al.  Invariance Principles for Energy Functionals on Spheres , 2004 .

[56]  Chaorong Li,et al.  Triangular and Fibonacci Number Patterns Driven by Stress on Core/Shell Microstructures , 2005, Science.

[57]  J. M. Picone,et al.  Thermospheric densities derived from spacecraft orbits: Accurate processing of two‐line element sets , 2005 .

[58]  H. V. D. Dool,et al.  Empirical Methods in Short-Term Climate Prediction , 2006 .

[59]  J. Lean,et al.  Thermospheric densities derived from spacecraft orbits: Application to the Starshine satellites , 2006 .

[60]  Generalized Euler-MacLaurin formulae and end corrections for accurate quadrature on Fibonacci grids , 2006 .

[61]  Michael A. Earle Sphere to Spheroid Comparisons , 2006, Journal of Navigation.

[62]  Lars E. Sjöberg,et al.  Determination of areas on the plane, sphere and ellipsoid , 2006 .

[63]  R. Swinbank,et al.  Fibonacci grids: A novel approach to global modelling , 2006 .

[64]  Enrique Maciá,et al.  The role of aperiodic order in science and technology , 2006 .

[65]  Shaojun Feng,et al.  An Area Computation Based Method for RAIM Holes Assessment , 2006 .

[66]  D. Williamson The Evolution of Dynamical Cores for Global Atmospheric Models(125th Anniversary Issue of the Meteorological Society of Japan) , 2007 .

[67]  A. Kafka Does seismicity delineate zones where future large earthquakes are likely to occur in intraplate environments , 2007 .

[68]  Rizwan Ahmad,et al.  Quasi Monte Carlo-based isotropic distribution of gradient directions for improved reconstruction quality of 3D EPR imaging. , 2007, Journal of magnetic resonance.

[69]  Antony Galton,et al.  Comparison of region approximation techniques based on Delaunay triangulations and Voronoi diagrams , 2008, Comput. Environ. Urban Syst..

[70]  Christian Hüttig,et al.  The spiral grid: A new approach to discretize the sphere and its application to mantle convection , 2008 .

[71]  R. Purser Generalized fibonacci grids; a new class of structured, smoothly adaptive multi-dimensional computational lattices , 2008 .

[72]  A. Jon Kimerling,et al.  A comparison of intercell metrics on discrete global grid systems , 2008, Comput. Environ. Urban Syst..

[73]  Heino Hellwig,et al.  Phyllotaxis , 2017, Current Biology.