Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model

We consider the classical parabolic–parabolic Keller–Segel system {ut=Δu−∇⋅(u∇v),x∈Ω,t>0,vt=Δv−v+u,x∈Ω,t>0, under homogeneous Neumann boundary conditions in a smooth bounded domain Ω⊂Rn. It is proved that in space dimension n⩾3, for each q>n2 and p>n one can find e0>0 such that if the initial data (u0,v0) satisfy ‖u0‖Lq(Ω)<e and ‖∇v0‖Lp(Ω)<e then the solution is global in time and bounded and asymptotically behaves like the solution of a discoupled system of linear parabolic equations. In particular, (u,v) approaches the steady state (m,m) as t→∞, where m is the total mass m:=∫Ωu0 of the population. Moreover, we shall show that if Ω is a ball then for arbitrary prescribed m>0 there exist unbounded solutions emanating from initial data (u0,v0) having total mass ∫Ωu0=m.

[1]  Takashi Suzuki,et al.  Chemotactic collapse in a parabolic system of mathematical biology , 2000 .

[2]  Dirk Horstmann,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .

[3]  Pavol Quittner,et al.  Superlinear Parabolic Problems , 2007, Birkhäuser Advanced Texts Basler Lehrbücher.

[4]  Howard A. Levine,et al.  The Role of Critical Exponents in Blowup Theorems , 1990, SIAM Rev..

[5]  Takashi Suzuki,et al.  Parabolic System of Chemotaxis: Blowup in a Finite and the Infinite Time , 2001 .

[6]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[7]  K. Painter,et al.  A User's Guide to Pde Models for Chemotaxis , 2022 .

[8]  Benoit Perthame,et al.  Asymptotic decay for the solutions of the parabolic-parabolic Keller-Segel chemotaxis system in critical spaces , 2008, Math. Comput. Model..

[9]  Miguel A. Herrero,et al.  Self-similar blow-up for a reaction-diffusion system , 1998 .

[10]  Eduard Feireisl,et al.  On convergence to equilibria for the Keller–Segel chemotaxis model , 2007 .

[11]  Dirk Horstmann,et al.  Blow-up in a chemotaxis model without symmetry assumptions , 2001, European Journal of Applied Mathematics.

[12]  Michael Winkler,et al.  Does a ‘volume‐filling effect’ always prevent chemotactic collapse? , 2010 .

[13]  Benoît Perthame,et al.  Global Solutions of Some Chemotaxis and Angiogenesis Systems in High Space Dimensions , 2004 .

[14]  Xavier Mora,et al.  Semilinear parabolic problems define semiflows on ^{} spaces , 1983 .

[15]  Vincent Calvez,et al.  The parabolic-parabolic Keller-Segel model in R2 , 2008 .

[16]  T. Nagai,et al.  Global existence and blowup of solutions to a chemotaxis system , 2001 .

[17]  Miguel A. Herrero,et al.  Finite-time aggregation into a single point in a reaction - diffusion system , 1997 .

[18]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[19]  Dirk Horstmann,et al.  Boundedness vs. blow-up in a chemotaxis system , 2005 .

[20]  M. A. Herrero,et al.  A blow-up mechanism for a chemotaxis model , 1997 .

[21]  A. Boy,et al.  Analysis for a system of coupled reaction-diffusion parabolic equations arising in biology , 1996 .

[22]  Takashi Suzuki,et al.  Concentration lemma, Brezis-Merle type inequality, and a parabolic system of chemotaxis , 2001 .

[23]  W. Jäger,et al.  On explosions of solutions to a system of partial differential equations modelling chemotaxis , 1992 .

[24]  Atsushi Yagi,et al.  NORM BEHAVIOR OF SOLUTIONS TO A PARABOLIC SYSTEM OF CHEMOTAXIS , 1997 .

[25]  H. Gajewski,et al.  On a Reaction - Diffusion System Modelling Chemotaxis , 2000 .

[26]  Leo P. Kadanoff,et al.  Diffusion, attraction and collapse , 1999 .

[27]  Haim Brezis,et al.  Semi-linear second-order elliptic equations in L 1 , 1973 .

[28]  O. A. Ladyzhenskai︠a︡,et al.  Linear and Quasi-linear Equations of Parabolic Type , 1995 .