Determination of hot and cold rolling textures of steels: combined Bayesian neural network model

Abstract The work reported in the present paper outlines the use of a combined artificial neural network model capable of fast online prediction of textures in low and extralow carbon steels. We approach the problem by a Bayesian framework neural network model that takes into account as input to the model the influence of 23 parameters describing the chemical composition and the thermomechanical processes, such as austenite and ferrite rolling, coiling, cold working and subsequent annealing, involved in the production route of low and extralow carbon steels. The output of the model is in the form of fibre texture data. The predictions of the network provide an excellent match to the experimentally measured data. The results presented in the present paper demonstrate that this model can help in optimising the normal anisotropy rm of steel products.

[1]  C. Capdevila,et al.  Comparison of the annealing behaviour between cold and warm rolled ELC steels by thermoelectric power measurements , 2007 .

[2]  C. Capdevila,et al.  Influence of Second Phase Particles on Recrystallisation of Cold-Rolled Low Carbon Microalloyed Steels during Isothermal Annealing , 2005 .

[3]  M. M. Petite,et al.  Modelización de la evolución microestructural durante el recocido continuo de chapas de acero bajo en carbono. Predicción de las propiedades mecánicas , 1998 .

[4]  W. C. Jeong Effect of hot-rolling temperature on microstructure and texture of an ultra-low carbon Ti-interstitial-free steel , 2008 .

[5]  W. Marsden I and J , 2012 .

[6]  David J. C. MacKay,et al.  A Practical Bayesian Framework for Backpropagation Networks , 1992, Neural Computation.

[7]  M. R. Toroghinejad,et al.  Warm rolling behaviour of low carbon steels , 2003 .

[8]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[9]  C. Capdevila,et al.  Kinetics and dilatometric behaviour of non-isothermal ferrite–austenite transformation , 2001 .

[10]  V. Cascioli,et al.  Texture control in cold-rolled steel sheets for an optimised anisotropy , 2002 .

[11]  Neural network model for improvement of strength–ductility compromise in low carbon sheet steels , 2006 .

[12]  H. K. D. H. Bhadeshia,et al.  Neural Networks in Materials Science , 1999 .

[13]  로드니 제임스 드라이,et al.  Ironmaking and Steelmaking , 2005 .

[14]  A. Heckler,et al.  Texture in deep drawing columbium (Nb)-treated interstitial-free steels , 1975 .

[15]  J. Jonas,et al.  Transformation Textures in Steels , 1994 .

[16]  C. Capdevila,et al.  Influence of processing parameters on the recrystallized microstructure of extra-low-carbon steels , 2006 .

[17]  C. Capdevila,et al.  Global recrystallisation model of low carbon sheet steels with different cementite contents , 2009 .

[18]  J. Jonas,et al.  Measurement and prediction of plastic anisotropy in deep-drawing steels , 1990 .

[19]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[20]  W. Hutchinson Development and control of annealing textures in low-carbon steels , 1984 .

[21]  B. Hutchinson Microstructure development during cooling of hot rolled steels , 2001 .

[22]  R. E. Hook,et al.  Recrystallization of deep drawing columbium (Nb)-treated interstitial-free sheet steels , 1975 .

[23]  C. Capdevila,et al.  A New Approach on the Modelling of Isothermal Recrystallisation in Cold Rolled Ferritic Steels : An Application to Back-Annealing of Low Carbon Sheet Steels , 2008 .

[24]  J. Jonas,et al.  Cold rolling and annealing textures in low carbon and extra low carbon steels , 1994 .

[25]  J. Szpunar,et al.  A new model of Goss texture development during secondary recrystallization of electrical steel , 1997 .