Duality quantum computer and the efficient quantum simulations

Duality quantum computing is a new mode of a quantum computer to simulate a moving quantum computer passing through a multi-slit. It exploits the particle wave duality property for computing. A quantum computer with n qubits and a qudit simulates a moving quantum computer with n qubits passing through a d-slit. Duality quantum computing can realize an arbitrary sum of unitaries and therefore a general quantum operator, which is called a generalized quantum gate. All linear bounded operators can be realized by the generalized quantum gates, and unitary operators are just the extreme points of the set of generalized quantum gates. Duality quantum computing provides flexibility and a clear physical picture in designing quantum algorithms, and serves as a powerful bridge between quantum and classical algorithms. In this paper, after a brief review of the theory of duality quantum computing, we will concentrate on the applications of duality quantum computing in simulations of Hamiltonian systems. We will show that duality quantum computing can efficiently simulate quantum systems by providing descriptions of the recent efficient quantum simulation algorithm of Childs and Wiebe (Quantum Inf Comput 12(11–12):901–924, 2012) for the fast simulation of quantum systems with a sparse Hamiltonian, and the quantum simulation algorithm by Berry et al. (Phys Rev Lett 114:090502, 2015), which provides exponential improvement in precision for simulating systems with a sparse Hamiltonian.

[1]  HuaiXin Cao,et al.  A Note on the Extreme Points of Positive Quantum Operations , 2009 .

[2]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[3]  Gui-Lu Long,et al.  An optimal expression of a Kraus operator as a linear combination of unitary matrices , 2012 .

[4]  李春燕,et al.  Allowable Generalized Quantum Gates Using Nonlinear Quantum Optics , 2010 .

[5]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[6]  Chuanxi Zhu,et al.  Remarks on generalized quantum gates , 2014 .

[7]  Shang Bin,et al.  Prime Factorization in the Duality Computer , 2007 .

[8]  P. Benioff The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines , 1980 .

[9]  Gui-Lu Long Mathematical theory of the duality computer in the density matrix formalism , 2008, Quantum Inf. Process..

[10]  Yao Lu,et al.  Experimental digital quantum simulation of temporal–spatial dynamics of interacting fermion system , 2015 .

[11]  Andrew T. Sornborger,et al.  Quantum Simulation of Tunneling in Small Systems , 2012, Scientific Reports.

[12]  Howard E. Brandt,et al.  Quantum-cryptographic entangling probe , 2005 .

[13]  H. Brandt,et al.  Converting a positive operator-valued measure to a design for a measuring instrument on the laboratory bench , 1997 .

[14]  F. M. Toyama,et al.  Quantum search with certainty based on modified Grover algorithms: optimum choice of parameters , 2013, Quantum Inf. Process..

[15]  Liu Yang,et al.  Duality Computing in Quantum Computers , 2008 .

[16]  Scott Aaronson,et al.  Quantum computing, postselection, and probabilistic polynomial-time , 2004, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[17]  Guilu Long,et al.  Experimental realization of nonadiabatic holonomic quantum computation. , 2013, Physical review letters.

[18]  Liang Hao,et al.  Why Can We Copy Classical Information , 2011 .

[19]  S. Blanes,et al.  Extrapolation of symplectic Integrators , 1999 .

[20]  Amnon Ta-Shma,et al.  Adiabatic quantum state generation and statistical zero knowledge , 2003, STOC '03.

[21]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[22]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[23]  Zhang Cunlin,et al.  Quantum Computation with Nonlinear Optics , 2008 .

[24]  D. Dieks Communication by EPR devices , 1982 .

[25]  Gui Lu Long,et al.  Mathematical Theory of Generalized Duality Quantum Computers Acting on Vector-States , 2013 .

[26]  Yang Liu,et al.  Deleting a marked state in quantum database in a duality computing mode , 2013 .

[27]  Liang Chen,et al.  Generalized duality quantum computers acting on mixed states , 2015, Quantum Inf. Process..

[28]  Yongfeng Wu,et al.  Jump-diffusion CIR model and its applications in credit risk , 2014 .

[29]  Daniel A. Spielman,et al.  Exponential algorithmic speedup by a quantum walk , 2002, STOC '03.

[30]  G. Long,et al.  Prime Factorization in the Duality Computer , 2006, quant-ph/0607026.

[31]  Yang Liu,et al.  Realization of Kraus operators and POVM measurements using a duality quantum computer , 2014 .

[32]  Howard E. Brandt,et al.  Positive operator valued measure in quantum information processing , 1998, Defense, Security, and Sensing.

[33]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[34]  Andrew M. Childs,et al.  Simulating Hamiltonian dynamics with a truncated Taylor series. , 2014, Physical review letters.

[35]  Long Gui-lu,et al.  General Quantum Interference Principle and Duality Computer , 2006 .

[36]  G. Long The General Quantum Interference Principle and the Duality Computer , 2005, quant-ph/0512120.

[37]  S. Gudder Duality Quantum Computers and Quantum Operations , 2008 .

[38]  Gui Lu Long Duality Quantum Computing and Duality Quantum Information Processing , 2011 .

[39]  M. Suzuki,et al.  General theory of fractal path integrals with applications to many‐body theories and statistical physics , 1991 .

[40]  Andrew M. Childs,et al.  Exponential improvement in precision for simulating sparse Hamiltonians , 2013, Forum of Mathematics, Sigma.

[41]  Howard E. Brandt Secrecy capacity in the four-state protocol of quantum key distribution , 2002 .

[42]  Nathan Wiebe,et al.  Hamiltonian simulation using linear combinations of unitary operations , 2012, Quantum Inf. Comput..

[43]  Howard E. Brandt,et al.  Quantum computational geodesics , 2009 .

[44]  HuaiXin Cao,et al.  Complex duality quantum computers acting on pure and mixed states , 2012 .

[45]  G. Long Grover algorithm with zero theoretical failure rate , 2001, quant-ph/0106071.

[46]  Howard E. Brandt,et al.  Qubit devices and the issue of quantum decoherence , 1999 .

[47]  Weng Jia-Qiang,et al.  Control of Beam Halo-Chaos for an Intense Charged-Particle Beam Propagating Through Double Periodic Focusing Field by Soliton , 2008 .

[48]  Yan-Ni Dou,et al.  Note on Generalized Quantum Gates and Quantum Operations , 2008 .

[49]  Howard E. Brandt ASPECTS OF THE RIEMANNIAN GEOMETRY OF QUANTUM COMPUTATION , 2012 .

[50]  Yue-Qing Wang,et al.  Applications of the generalized Lüders theorem , 2008 .

[51]  Ryan Babbush,et al.  What is the Computational Value of Finite Range Tunneling , 2015, 1512.02206.

[52]  Howard E. Brandt,et al.  Geodesic derivative in quantum circuit complexity analysis , 2010 .

[53]  M. W. Johnson,et al.  Quantum annealing with manufactured spins , 2011, Nature.

[54]  Dan Liu,et al.  An N/4 fixed-point duality quantum search algorithm , 2010 .

[55]  John Myers,et al.  ASPECTS OF ENTANGLED TRANSLUCENT EAVESDROPPING IN QUANTUM CRYPTOGRAPHY , 1997 .

[56]  Lihua Wu,et al.  On mathematical theory of the duality computers , 2009, Quantum Inf. Process..

[57]  Liang Hao,et al.  Experimental implementation of a fixed-point duality quantum search algorithm in the nuclear magnetic resonance quantum system , 2011 .

[58]  Yang Liu,et al.  Duality quantum computing , 2008, Frontiers of Computer Science in China.

[59]  B. Chakrabarti,et al.  Colloquium : Quantum annealing and analog quantum computation , 2008, 0801.2193.

[60]  Peter W. Shor,et al.  Why haven't more quantum algorithms been found? , 2003, JACM.

[61]  Wang Chuan,et al.  Allowable Generalized Quantum Gates , 2009 .

[62]  Liang Hao,et al.  Experimental simulation of quantum tunneling in small systems , 2012, Scientific Reports.

[63]  Li Chun-Yan,et al.  Allowable Generalized Quantum Gates Using Nonlinear Quantum Optics , 2010 .

[64]  Ray,et al.  Sherrington-Kirkpatrick model in a transverse field: Absence of replica symmetry breaking due to quantum fluctuations. , 1989, Physical review. B, Condensed matter.

[65]  Li Li,et al.  Realization of allowable qeneralized quantum gates , 2010 .

[66]  Yang Liu,et al.  Duality and Recycling Computing in Quantum Computers , 2007, 0708.1986.

[67]  Tao Zhou,et al.  Density matrix formalism of duality quantum computer and the solution of zero-wave-function paradox , 2011, Quantum Information Processing.

[68]  Stan Gudder,et al.  Mathematical Theory of Duality Quantum Computers , 2007, Quantum Inf. Process..

[69]  R. Feynman Simulating physics with computers , 1999 .

[70]  Nathan Wiebe,et al.  Floating point representations in quantum circuit synthesis , 2013, 1305.5528.

[71]  Liang Hao,et al.  Observation of a fast evolution in a parity-time-symmetric system , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[72]  Li Li,et al.  Restricted allowable generalized quantum gates , 2010 .