Measurement Back-Action in Stacked Graphene Quantum Dots.

We present an electronic transport experiment in graphene where both classical and quantum mechanical charge detector back-action on a quantum dot are investigated. The device consists of two stacked graphene quantum dots separated by a thin layer of boron nitride. This device is fabricated by van der Waals stacking and is equipped with separate source and drain contacts to both dots. By applying a finite bias to one quantum dot, a current is induced in the other unbiased dot. We present an explanation of the observed measurement-induced current based on strong capacitive coupling and energy dependent tunneling barriers, breaking the spatial symmetry in the unbiased system. This is a special feature of graphene-based quantum devices. The experimental observation of transport in classically forbidden regimes is understood by considering higher-order quantum mechanical back-action mechanisms.

[1]  Y. Hirayama,et al.  Controlled resonant tunneling in a coupled double-quantum-dot system , 2007 .

[2]  S. A. Gurvitz Measurements with a noninvasive detector and dephasing mechanism , 1997 .

[3]  T. Ihn,et al.  Coulomb Gap in Graphene Nanoribbons , 2011, 1107.4326.

[4]  P. Matagne,et al.  Experiments And Simulations On A Few‐Electron Quantum Dot Circuit With Integrated Charge Read‐Out , 2002, cond-mat/0212489.

[5]  T. Ihn,et al.  Electronic triple-dot transport through a bilayer graphene island with ultrasmall constrictions , 2013, 1406.5296.

[6]  T. Ihn,et al.  Measuring the local quantum capacitance of graphene using a strongly coupled graphene nanoribbon , 2015 .

[7]  J. Reno,et al.  1D-1D Coulomb Drag Signature of a Luttinger Liquid , 2013, Science.

[8]  C. Stampfer,et al.  Time-resolved charge detection in graphene quantum dots , 2011, 1105.0274.

[9]  Keeley A. Crockett,et al.  Differential charge sensing and charge delocalization in a tunable double quantum dot. , 2003, Physical review letters.

[10]  Y. Gefen,et al.  Weak measurement of cotunneling time , 2013, 1309.7561.

[11]  W. V. D. Wiel,et al.  Electron transport through double quantum dots , 2002, cond-mat/0205350.

[12]  Ritchie,et al.  Measurements of Coulomb blockade with a noninvasive voltage probe. , 1993, Physical review letters.

[13]  D. Goldhaber-Gordon,et al.  Quantum dot behavior in graphene nanoconstrictions. , 2008, Nano letters.

[14]  A. Clerk,et al.  Quantum interference and phonon-mediated back-action in lateral quantum-dot circuits , 2012, Nature Physics.

[15]  Quantum Transport in Semiconductor Nanostructures , 2004, cond-mat/0412664.

[16]  Quantum effects in Coulomb blockade , 2001, cond-mat/0103008.

[17]  P. Kim,et al.  Electron transport in disordered graphene nanoribbons. , 2009, Physical review letters.

[18]  A. N. Korotkov,et al.  Continuous weak measurement of quantum coherent oscillations , 2001 .

[19]  West,et al.  Mutual friction between parallel two-dimensional electron systems. , 1991, Physical review letters.

[20]  K. Klitzing,et al.  Precise experimental characterization of a double quantum dot system with strong capacitive interdot coupling , 2008 .

[21]  L. Vandersypen,et al.  Electrostatic confinement of electrons in graphene nanoribbons , 2008, 0812.4038.

[22]  Measuring Cotunneling in its wake , 2014, 1403.5897.

[23]  Fabrication of coupled quantum dots for multiport access , 2003 .

[24]  M. I. Katsnelson,et al.  Strong Coulomb drag and broken symmetry in double-layer graphene , 2012, Nature Physics.

[25]  Yu Huang,et al.  Very large magnetoresistance in graphene nanoribbons , 2010, Nature nanotechnology.

[26]  S. Girvin,et al.  Introduction to quantum noise, measurement, and amplification , 2008, 0810.4729.

[27]  J. Pekola,et al.  Nongalvanic thermometry for ultracold two-dimensional electron domains , 2012, 1203.5693.

[28]  U. Gasser,et al.  Statistical electron excitation in a double quantum dot induced by two independent quantum point contacts , 2008, 0808.2905.

[29]  T. Ihn,et al.  Reactive-ion-etched graphene nanoribbons on a hexagonal boron nitride substrate , 2012, 1302.1057.

[30]  S. Huelga,et al.  Dephasing-assisted transport in linear triple quantum dots , 2014, 1407.0924.

[31]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[32]  Arthur C. Gossard,et al.  Strongly capacitively coupled quantum dots , 2002 .

[33]  S. Manus,et al.  Radio frequency pulsed-gate charge spectroscopy on coupled quantum dots , 2010, 1006.5554.

[34]  M. Beck,et al.  Corrigendum: Quantum dot occupation and electron dwell time in the cotunneling regime , 2012, 1204.4553.

[35]  K. Klitzing,et al.  Experimental evidence for spinless Kondo effect in two electrostatically coupled quantum dot systems , 2002 .

[36]  C. Stampfer,et al.  Transport gap in side-gated graphene constrictions , 2008, 0811.0676.

[37]  S. V. Morozov,et al.  Tunable metal-insulator transition in double-layer graphene heterostructures , 2011, 1107.0115.

[38]  A. R. Marlow,et al.  Mathematical foundations of quantum theory , 1978 .

[39]  T. Ihn,et al.  Characterizing wave functions in graphene nanodevices: Electronic transport through ultrashort graphene constrictions on a boron nitride substrate , 2014, 1406.5355.

[40]  Low-temperature transport through a quantum dot , 2005, cond-mat/0501007.

[41]  J. Weis,et al.  Strongly electrostatically coupled quantum dots with separate leads , 2000 .

[42]  A. Gossard,et al.  Frequency-selective single-photon detection using a double quantum dot. , 2007, Physical review letters.

[43]  K. Held,et al.  Correlated electron tunneling through two separate quantum dot systems with strong capacitive interdot coupling. , 2008, Physical review letters.

[44]  A. Gossard,et al.  GaAs Quantum Dot Thermometry Using Direct Transport and Charge Sensing , 2014, 1401.2330.

[45]  E. Tutuc,et al.  Coulomb drag and magnetotransport in graphene double layers , 2012, 1206.2854.

[46]  Rafael Sánchez,et al.  Mesoscopic Coulomb drag, broken detailed balance, and fluctuation relations. , 2009, Physical review letters.

[47]  Philip Kim,et al.  Electronic transport in locally gated graphene nanoconstrictions , 2007 .

[48]  J. Reno,et al.  Positive and negative Coulomb drag in vertically integrated one-dimensional quantum wires. , 2010, Nature nanotechnology.

[49]  R. Westervelt,et al.  Direct measurement of the destruction of charge quantization in a single-electron box , 1998, cond-mat/9811407.

[50]  T. Ihn,et al.  Tunable charge detectors for semiconductor quantum circuits , 2012, 1209.4447.

[51]  T. Ihn,et al.  Localized charge carriers in graphene nanodevices , 2015 .