Cationic uncouplers of oxidative phosphorylation are inducers of mitochondrial permeability transition

[1]  P. Bradshaw,et al.  Properties of a Cyclosporin-insensitive Permeability Transition Pore in Yeast Mitochondria* , 1997, The Journal of Biological Chemistry.

[2]  K. Yamamoto,et al.  Source of ATP for hexokinase-catalyzed glucose phosphorylation in tumor cells: dependence on the rate of oxidative phosphorylation relative to that of extramitochondrial ATP generation. , 1997, Biochimica et biophysica acta.

[3]  M. Zoratti,et al.  The mitochondrial permeability transition. , 1995, Biochimica et biophysica acta.

[4]  P. Bernardi,et al.  Recent progress on regulation of the mitochondrial permeability transition pore; a cyclosporin-sensitive pore in the inner mitochondrial membrane , 1994, Journal of bioenergetics and biomembranes.

[5]  P. Bernardi,et al.  Physiological effectors modify voltage sensing by the cyclosporin A-sensitive permeability transition pore of mitochondria. , 1993, The Journal of biological chemistry.

[6]  Y. Shinohara,et al.  Why is inorganic phosphate necessary for uncoupling of oxidative phosphorylation by Cd2+ in rat liver mitochondria? , 1991, Biochimica et biophysica acta.

[7]  H. Terada Uncouplers of oxidative phosphorylation. , 1990, Environmental health perspectives.

[8]  T. Gunter,et al.  Mechanisms by which mitochondria transport calcium. , 1990, The American journal of physiology.

[9]  M. Dempsey,et al.  Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria. , 1989, The Journal of biological chemistry.

[10]  M. Crompton,et al.  Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. , 1988, The Biochemical journal.

[11]  R. Docampo,et al.  Crystal violet as an uncoupler of oxidative phosphorylation in rat liver mitochondria. , 1988, The Journal of biological chemistry.

[12]  Y. Shinohara,et al.  Possible involvement of the 29 kDa protein in H+-ATPase in the action of cationic uncoupler of oxidative phosphorylation. Effect of the (o-phenanthroline)2-Cu2+ complex as a cationic uncoupler. , 1987, Biochimica et biophysica acta.

[13]  T. Saitoh,et al.  Formation of a leakage-type ion pathway in lipid bilayer membranes by divalent cationic cyanine dyes in cooperation with inorganic phosphate. Role of the cyanine dye in uncoupling of oxidative phosphorylation. , 1985, The Journal of biological chemistry.

[14]  H. Nagamune,et al.  Uncoupling of oxidative phosphorylation by divalent cationic cyanine dye. Participation of phosphate transporter. , 1985, Biochimica et biophysica acta.

[15]  K. Åkerman,et al.  Mitochondrial calcium transport. , 1982, Biochimica et biophysica acta.

[16]  D. Pfeiffer,et al.  Increased permeability of mitochondria during Ca2+ release induced by t-butyl hydroperoxide or oxalacetate. the effect of ruthenium red. , 1982, The Journal of biological chemistry.

[17]  H. Terada,et al.  The interaction of highly active uncouplers with mitochondria. , 1981, Biochimica et biophysica acta.

[18]  J. Dilger,et al.  Transport of protons across membranes by weak acids. , 1980, Physiological reviews.

[19]  V. Skulachev,et al.  Conversion of biomembrane-produced energy into electric form. IV. General discussion. , 1970, Biochimica et biophysica acta.

[20]  E A Liberman,et al.  Conversion of biomembrane-produced energy into electric form. II. Intact mitochondria. , 1970, Biochimica et biophysica acta.

[21]  E. C. Slater,et al.  The enzymic hydrolysis of adenosine triphosphate by liver mitochondria. I. Activities at different pH values. , 1957, The Biochemical journal.