The Increasing Complexity of Hot Corrosion

It has been conjectured that if sulfur in fuel is removed, engine materials will cease to experience attack from hot corrosion, since this sulfur has been viewed as the primary cause of hot corrosion and sulfidation. Historically, hot corrosion has been defined as an accelerated degradation process that generally involves deposition of corrosive species (e.g., sulfates) from the surrounding environment (e.g., combustion gas) onto the surface of hot components, resulting in destruction of the protective oxide scale. Most papers in the literature, since the 1970s, consider sodium sulfate salt as the single specie contributing to hot corrosion.Recent Navy standards for Navy F-76 and similar fuels have dropped the sulfur content down to 15 parts per million (ppm). Most observers believe that the removal of sulfur will end hot corrosion events in the Fleet. However, the deposit chemistry influencing hot corrosion is known to be much more complex consisting of multiple sulfates and silicates. Sulfur species may still enter the combustion chamber via ship’s air intake, which may include seawater entrained in the air. In addition to sodium sulfate, seawater contains magnesium, calcium and potassium salts, and atmospheric contaminants that may contribute to hot corrosion. This paper will cover some of the revised understanding of hot corrosion and consider other possible contaminants that could further complicate a full understanding of hot corrosion.