Using regression trees to learn action models

Anyone who has ever driven a car on an icy road is aware of the impact the environment can have on our actions. In order to build effective plans, we must be aware of these environmental conditions and predict the effects they will have on our ability to act. We present an application of regression trees that allows a robot to learn action models through experience so that it can make similar predictions. We use this approach to allow a mobile robot to learn models to predict the effects of its navigation actions under various terrain conditions and use them in order to produce efficient plans.