Clustering and aggregating clues of trajectories for mining trajectory patterns and routes

In this paper, we propose a new trajectory pattern mining framework, namely Clustering and Aggregating Clues of Trajectories (CACT), for discovering trajectory routes that represent the frequent movement behaviors of a user. In addition to spatial and temporal biases, we observe that trajectories contain silent durations, i.e., the time durations when no data points are available to describe the movements of users, which bring many challenging issues to trajectory pattern mining. We claim that a movement behavior would leave some clues in its various sampled/observed trajectories. These clues may be extracted from spatially and temporally co-located data points from the observed trajectories. Based on this observation, we propose clue-aware trajectory similarity to measure the clues between two trajectories. Accordingly, we further propose the clue-aware trajectory clustering algorithm to cluster similar trajectories into groups to capture the movement behaviors of the user. Finally, we devise the clue-aware trajectory aggregation algorithm to aggregate trajectories in the same group to derive the corresponding trajectory pattern and route. We validate our ideas and evaluate the proposed CACT framework by experiments using both synthetic and real datasets. The experimental results show that CACT is more effective in discovering trajectory patterns than the state-of-the-art techniques for mining trajectory patterns.

[1]  George Wolberg,et al.  Monotonic cubic spline interpolation , 1999, 1999 Proceedings Computer Graphics International.

[2]  Roberto Tamassia,et al.  Dynamics-aware similarity of moving objects trajectories , 2007, GIS.

[3]  Lei Chen,et al.  Robust and fast similarity search for moving object trajectories , 2005, SIGMOD '05.

[4]  Qing Liu,et al.  A Hybrid Prediction Model for Moving Objects , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[5]  Panos Kalnis,et al.  On Discovering Moving Clusters in Spatio-temporal Data , 2005, SSTD.

[6]  Nirvana Meratnia,et al.  Spatiotemporal Compression Techniques for Moving Point Objects , 2004, EDBT.

[7]  Dino Pedreschi,et al.  Trajectory pattern mining , 2007, KDD '07.

[8]  Jae-Gil Lee,et al.  Trajectory clustering: a partition-and-group framework , 2007, SIGMOD '07.

[9]  Wen-Chih Peng,et al.  CarWeb: A Traffic Data Collection Platform , 2008, The Ninth International Conference on Mobile Data Management (mdm 2008).

[10]  Lei Chen,et al.  On the Marriage of Edit Distance and Lp Norms , 2004, VLDB 2004.

[11]  Jae-Gil Lee,et al.  Incremental Clustering for Trajectories , 2010, DASFAA.

[12]  Lei Chen,et al.  On The Marriage of Lp-norms and Edit Distance , 2004, VLDB.

[13]  Heng Tao Shen,et al.  Mining Trajectory Patterns Using Hidden Markov Models , 2007, DaWaK.

[14]  Padhraic Smyth,et al.  Trajectory clustering with mixtures of regression models , 1999, KDD '99.

[15]  Dimitrios Gunopulos,et al.  Indexing Multidimensional Time-Series , 2004, The VLDB Journal.

[16]  Hui Ding,et al.  Querying and mining of time series data: experimental comparison of representations and distance measures , 2008, Proc. VLDB Endow..

[17]  Eamonn J. Keogh,et al.  Exact indexing of dynamic time warping , 2002, Knowledge and Information Systems.

[18]  Robert Weibel,et al.  Revealing the physics of movement: Comparing the similarity of movement characteristics of different types of moving objects , 2009, Comput. Environ. Urban Syst..

[19]  Christian S. Jensen,et al.  Discovery of convoys in trajectory databases , 2008, Proc. VLDB Endow..

[20]  Nikos Mamoulis,et al.  Mining frequent spatio-temporal sequential patterns , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[21]  Jiawei Han,et al.  Swarm: Mining Relaxed Temporal Moving Object Clusters , 2010, Proc. VLDB Endow..

[22]  George Kollios,et al.  Mining, indexing, and querying historical spatiotemporal data , 2004, KDD.

[23]  Sanjay Chawla,et al.  Mining Spatio-temporal Association Rules, Sources, Sinks, Stationary Regions and Thoroughfares in Object Mobility Databases , 2006, DASFAA.

[24]  Dimitrios Gunopulos,et al.  Efficient Indexing of Spatiotemporal Objects , 2002, EDBT.

[25]  Dino Pedreschi,et al.  Time-focused clustering of trajectories of moving objects , 2006, Journal of Intelligent Information Systems.

[26]  Rolf Niedermeier,et al.  Data Reduction, Exact, and Heuristic Algorithms for Clique Cover , 2006, ALENEX.

[27]  Christian S. Jensen,et al.  Indexing the positions of continuously moving objects , 2000, SIGMOD '00.

[28]  Jian Pei,et al.  Query answering techniques on uncertain and probabilistic data: tutorial summary , 2008, SIGMOD Conference.

[29]  Christos Faloutsos,et al.  Efficient retrieval of similar time sequences under time warping , 1998, Proceedings 14th International Conference on Data Engineering.

[30]  Anthony K. H. Tung,et al.  SpADe: On Shape-based Pattern Detection in Streaming Time Series , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[31]  Hui Ding,et al.  Efficient Similarity Join of Large Sets of Moving Object Trajectories , 2008, 2008 15th International Symposium on Temporal Representation and Reasoning.

[32]  Dino Pedreschi,et al.  Efficient Mining of Temporally Annotated Sequences , 2006, SDM.

[33]  Vipin Kumar,et al.  Introduction to Data Mining, (First Edition) , 2005 .