3D reconstruction of non-rigid surfaces from realistic monocular video

A novel algorithm for recovering the 3D shape of deformable objects purely from realistic monocular video is presented in this paper. Unlike traditional non-rigid structure from motion (NRSfM) methods, which have been studied only on synthetic datasets and controlled lab environments that needs some prior constraints (such as manually segmented objects, limited rotations and occlusions, or full-length trajectories), the proposed method has been described and tested on realistic video sequences, which have been downloaded from some social networks (such as Facebook and Twitter). In order to apply NRSfM to the realistic video sequences, because of no-prior information about the scene and camera parameters, one should employ different methods that can handle a huge amount of unknown parameters (such as 3D shape and camera parameters) and deal with some other ambiguities such as incomplete segmentation and Tracking. In this paper, this goal is concerned by first proposing a novel method for completing the missing trajectories (as the most important challenge in realistic videos due to occlusions and lighting changes) and then applying a method that formulates the NRSfM as an energy minimization problem. The proposed method is evaluated on popular video segmentation datasets and its performance is compared to other available methods.

[1]  Henrik Aanæs,et al.  Estimation of Deformable Structure and Motion , 2002 .

[2]  C Tomasi,et al.  Shape and motion from image streams: a factorization method. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Naotoshi Seo ENEE731 Project Shape and motion from image streams: A factorization method , 2007 .

[4]  Lourdes Agapito,et al.  Dense Variational Reconstruction of Non-rigid Surfaces from Monocular Video , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Alessio Del Bue,et al.  Optimal Metric Projections for Deformable and Articulated Structure-from-Motion , 2011, International Journal of Computer Vision.

[6]  Takeo Kanade,et al.  Trajectory Space: A Dual Representation for Nonrigid Structure from Motion , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Henning Biermann,et al.  Recovering non-rigid 3D shape from image streams , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[8]  Matthew Brand,et al.  A direct method for 3D factorization of nonrigid motion observed in 2D , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[9]  Aaron Hertzmann,et al.  Nonrigid Structure-from-Motion: Estimating Shape and Motion with Hierarchical Priors , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Jitendra Malik,et al.  Grouping-Based Low-Rank Trajectory Completion and 3D Reconstruction , 2014, NIPS.

[11]  Alessio Del Bue,et al.  Non-Rigid Metric Shape and Motion Recovery from Uncalibrated Images Using Priors , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).