An update to Hippocampome.org by integrating single-cell phenotypes with circuit function in vivo

Understanding brain operation demands linking basic behavioral traits to cell-type specific dynamics of different brain-wide subcircuits. This requires a system to classify the basic operational modes of neurons and circuits. Single-cell phenotyping of firing behavior during ongoing oscillations in vivo has provided a large body of evidence on entorhinal–hippocampal function, but data are dispersed and diverse. Here, we mined literature to search for information regarding the phase-timing dynamics of over 100 hippocampal/entorhinal neuron types defined in Hippocampome.org. We identified missing and unresolved pieces of knowledge (e.g., the preferred theta phase for a specific neuron type) and complemented the dataset with our own new data. By confronting the effect of brain state and recording methods, we highlight the equivalences and differences across conditions and offer a number of novel observations. We show how a heuristic approach based on oscillatory features of morphologically identified neurons can aid in classifying extracellular recordings of single cells and discuss future opportunities and challenges towards integrating single-cell phenotypes with circuit function.

[1]  Eran Stark,et al.  In vivo optogenetic identification and manipulation of GABAergic interneuron subtypes. , 2023, ArXiv.

[2]  D. W. Wheeler,et al.  Comprehensive Estimates of Potential Synaptic Connections in Local Circuits of the Rodent Hippocampal Formation by Axonal-Dendritic Overlap , 2020, The Journal of Neuroscience.

[3]  Philipp Berens,et al.  Phenotypic variation of transcriptomic cell types in mouse motor cortex , 2020, Nature.

[4]  Brian R. Lee,et al.  Integrated Morphoelectric and Transcriptomic Classification of Cortical GABAergic Cells , 2020, Cell.

[5]  A. Losonczy,et al.  Large-Scale 3D Two-Photon Imaging of Molecularly Identified CA1 Interneuron Dynamics in Behaving Mice , 2020, Neuron.

[6]  L. M. de la Prida Potential factors influencing replay across CA1 during sharp-wave ripples , 2020, Philosophical Transactions of the Royal Society B.

[7]  Manuel Valero,et al.  Multimodal determinants of phase-locked dynamics across deep-superficial hippocampal sublayers during theta oscillations , 2020, bioRxiv.

[8]  L. M. de la Prida,et al.  Methods for single-cell recording and labeling in vivo , 2019, Journal of Neuroscience Methods.

[9]  C. L. Rees,et al.  Molecular Expression Profiles of Morphologically Defined Hippocampal Neuron Types: Empirical Evidence and Relational Inferences , 2019, bioRxiv.

[10]  Giorgio A. Ascoli,et al.  A comprehensive knowledge base of synaptic electrophysiology in the rodent hippocampal formation , 2019, bioRxiv.

[11]  Giorgio A. Ascoli,et al.  Simple models of quantitative firing phenotypes in hippocampal neurons: Comprehensive coverage of intrinsic diversity , 2019, bioRxiv.

[12]  Guosong Hong,et al.  Novel electrode technologies for neural recordings , 2019, Nature Reviews Neuroscience.

[13]  A. Berényi,et al.  Proximodistal Organization of the CA2 Hippocampal Area , 2019, Cell reports.

[14]  J. Poulet,et al.  Multiple Two-Photon Targeted Whole-Cell Patch-Clamp Recordings From Monosynaptically Connected Neurons in vivo , 2019, bioRxiv.

[15]  Liset Menendez de la Prida,et al.  The hippocampus in depth: a sublayer-specific perspective of entorhinal–hippocampal function , 2018, Current Opinion in Neurobiology.

[16]  D. Schmitz,et al.  Involvement of Mossy Cells in Sharp Wave-Ripple Activity In Vitro. , 2018, Cell reports.

[17]  A. Losonczy,et al.  CA1 pyramidal cell diversity enabling parallel information processing in the hippocampus , 2018, Nature Neuroscience.

[18]  Siavash Ahmadi,et al.  DENTATE NETWORK ACTIVITY IS NECESSARY FOR SPATIAL WORKING MEMORY BY SUPPORTING CA3 SHARP-WAVE RIPPLE GENERATION AND PROSPECTIVE FIRING OF CA3 NEURONS , 2017, Nature Neuroscience.

[19]  Sergey L. Gratiy,et al.  Fully integrated silicon probes for high-density recording of neural activity , 2017, Nature.

[20]  C. L. Rees,et al.  Quantitative firing pattern phenotyping of hippocampal neuron types , 2017, Scientific Reports.

[21]  C. L. Rees,et al.  Molecular fingerprinting of principal neurons in the rodent hippocampus: A neuroinformatics approach , 2017, Journal of pharmaceutical and biomedical analysis.

[22]  J. Knierim,et al.  Spatial Representations of Granule Cells and Mossy Cells of the Dentate Gyrus , 2017, Neuron.

[23]  György Buzsáki,et al.  Physiological Properties and Behavioral Correlates of Hippocampal Granule Cells and Mossy Cells , 2017, Neuron.

[24]  C. L. Rees,et al.  Weighing the Evidence in Peters’ Rule: Does Neuronal Morphology Predict Connectivity? , 2017, Trends in Neurosciences.

[25]  M. Valderrama,et al.  Altered Oscillatory Dynamics of CA1 Parvalbumin Basket Cells during Theta–Gamma Rhythmopathies of Temporal Lobe Epilepsy , 2016, eNeuro.

[26]  Giorgio A Ascoli,et al.  Graph Theoretic and Motif Analyses of the Hippocampal Neuron Type Potential Connectome , 2016, eNeuro.

[27]  Philipp Berens,et al.  Sparse activity of identified dentate granule cells during spatial exploration , 2016, eLife.

[28]  Giorgio A Ascoli,et al.  In search of a periodic table of the neurons: Axonal‐dendritic circuitry as the organizing principle , 2016, BioEssays : news and reviews in molecular, cellular and developmental biology.

[29]  G. Buzsáki,et al.  Role of Hippocampal CA2 Region in Triggering Sharp-Wave Ripples , 2016, Neuron.

[30]  Yuji Ikegaya,et al.  3‐Hz subthreshold oscillations of CA2 neurons In vivo , 2016, Hippocampus.

[31]  G. Buzsáki,et al.  Spatial coding and physiological properties of hippocampal neurons in the Cornu Ammonis subregions , 2016, Hippocampus.

[32]  Spyros Darmanis,et al.  Single-cell RNAseq reveals cell adhesion molecule profiles in electrophysiologically defined neurons , 2016, Proceedings of the National Academy of Sciences.

[33]  Helen E. Scharfman,et al.  The enigmatic mossy cell of the dentate gyrus , 2016, Nature Reviews Neuroscience.

[34]  Nelson Spruston,et al.  Hipposeq: a comprehensive RNA-seq database of gene expression in hippocampal principal neurons , 2016, eLife.

[35]  Athanassios G. Siapas,et al.  Membrane Potential Dynamics of CA1 Pyramidal Neurons during Hippocampal Ripples in Awake Mice , 2016, Neuron.

[36]  Mattias P. Karlsson,et al.  A hippocampal network for spatial coding during immobility and sleep , 2016, Nature.

[37]  G. Buzsáki,et al.  Monolithically Integrated μLEDs on Silicon Neural Probes for High-Resolution Optogenetic Studies in Behaving Animals , 2015, Neuron.

[38]  Yuchio Yanagawa,et al.  Integration of electrophysiological recordings with single-cell RNA-seq data identifies novel neuronal subtypes , 2015, Nature Biotechnology.

[39]  C. L. Rees,et al.  Hippocampome.org: a knowledge base of neuron types in the rodent hippocampus , 2015, eLife.

[40]  C. Spearman The proof and measurement of association between two things. , 2015, International journal of epidemiology.

[41]  Daniel Gomez-Dominguez,et al.  Determinants of different deep and superficial CA1 pyramidal cell dynamics during sharp-wave ripples , 2015, Nature Neuroscience.

[42]  S. Ciocchi,et al.  Selective information routing by ventral hippocampal CA1 projection neurons , 2015, Science.

[43]  Giorgio A. Ascoli,et al.  Towards the automatic classification of neurons , 2015, Trends in Neurosciences.

[44]  G. Buzsáki,et al.  Tools for probing local circuits: high-density silicon probes combined with optogenetics , 2015, Neuron.

[45]  Eran Stark,et al.  Excitation and Inhibition Compete to Control Spiking during Hippocampal Ripples: Intracellular Study in Behaving Mice , 2014, The Journal of Neuroscience.

[46]  Peyman Golshani,et al.  Functional fission of parvalbumin interneuron classes during fast network events , 2014, eLife.

[47]  P. Somogyi,et al.  Sleep and Movement Differentiates Actions of Two Types of Somatostatin-Expressing GABAergic Interneuron in Rat Hippocampus , 2014, Neuron.

[48]  M. Brecht,et al.  Grid-Layout and Theta-Modulation of Layer 2 Pyramidal Neurons in Medial Entorhinal Cortex , 2014, Science.

[49]  E. Callaway,et al.  Erratum: Orthogonal micro-organization of orientation and spatial frequency in primate primary visual cortex , 2013, Nature Neuroscience.

[50]  P. Somogyi,et al.  Network state-dependent inhibition of identified hippocampal CA3 axo-axonic cells in vivo , 2013, Nature Neuroscience.

[51]  P. Jonas,et al.  Theta-Gamma-Modulated Synaptic Currents in Hippocampal Granule Cells In Vivo Define a Mechanism for Network Oscillations , 2013, Neuron.

[52]  P. Golshani,et al.  Frequency-invariant temporal ordering of interneuronal discharges during hippocampal oscillations in awake mice , 2012, Proceedings of the National Academy of Sciences.

[53]  Michael Lagler,et al.  Behavior-dependent specialization of identified hippocampal interneurons , 2012, Nature Neuroscience.

[54]  Kenneth D Harris,et al.  Towards reliable spike-train recordings from thousands of neurons with multielectrodes , 2012, Current Opinion in Neurobiology.

[55]  Thomas Klausberger,et al.  Terminal Field and Firing Selectivity of Cholecystokinin-Expressing Interneurons in the Hippocampal CA3 Area , 2011, The Journal of Neuroscience.

[56]  G. Buzsáki,et al.  Hippocampal CA1 pyramidal cells form functionally distinct sublayers , 2011, Nature Neuroscience.

[57]  Robert U Muller,et al.  Theta Phase Classification of Interneurons in the Hippocampal Formation of Freely Moving Rats , 2011, The Journal of Neuroscience.

[58]  G. Buzsáki,et al.  Intrinsic Circuit Organization and Theta–Gamma Oscillation Dynamics in the Entorhinal Cortex of the Rat , 2010, The Journal of Neuroscience.

[59]  S. Siegelbaum,et al.  Strong CA2 Pyramidal Neuron Synapses Define a Powerful Disynaptic Cortico-Hippocampal Loop , 2010, Neuron.

[60]  G. Buzsáki,et al.  Theta Oscillations Provide Temporal Windows for Local Circuit Computation in the Entorhinal-Hippocampal Loop , 2009, Neuron.

[61]  Petter Laake,et al.  Recommended tests for association in 2×2 tables , 2009, Statistics in medicine.

[62]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[63]  Y. Yanagawa,et al.  Quantitative chemical composition of cortical GABAergic neurons revealed in transgenic venus-expressing rats. , 2008, Cerebral cortex.

[64]  Giorgio A Ascoli,et al.  Distinct classes of pyramidal cells exhibit mutually exclusive firing patterns in hippocampal area CA3b , 2008, Hippocampus.

[65]  G. Ascoli,et al.  NeuroMorpho.Org: A Central Resource for Neuronal Morphologies , 2007, The Journal of Neuroscience.

[66]  C. Koch,et al.  On the origin of the extracellular action potential waveform: A modeling study. , 2006, Journal of neurophysiology.

[67]  Jozsef Csicsvari,et al.  Complementary Roles of Cholecystokinin- and Parvalbumin-Expressing GABAergic Neurons in Hippocampal Network Oscillations , 2005, The Journal of Neuroscience.

[68]  E. Callaway,et al.  Redefining the boundaries of the hippocampal CA2 subfield in the mouse using gene expression and 3‐dimensional reconstruction , 2005, The Journal of comparative neurology.

[69]  P. Somogyi,et al.  Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo , 2003, Nature.

[70]  Giorgio A Ascoli,et al.  A new bursting model of CA3 pyramidal cell physiology suggests multiple locations for spike initiation. , 2002, Bio Systems.

[71]  G. Buzsáki Theta Oscillations in the Hippocampus , 2002, Neuron.

[72]  J. Csicsvari,et al.  Ensemble Patterns of Hippocampal CA3-CA1 Neurons during Sharp Wave–Associated Population Events , 2000, Neuron.

[73]  G Buzsáki,et al.  Dentate EEG spikes and associated interneuronal population bursts in the hippocampal hilar region of the rat. , 1995, Journal of neurophysiology.

[74]  P. Somogyi,et al.  Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo , 2004, Nature Neuroscience.

[75]  G. Buzsáki,et al.  Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells, and basket cells , 1995, Hippocampus.